特黄性暴力强奷在线播放,野花社区www中文
二項(xiàng)式定理形式上的特點(diǎn)(1)二項(xiàng)展開(kāi)式有n+1項(xiàng),而不是n項(xiàng).(2)二項(xiàng)式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項(xiàng)展開(kāi)式中某一項(xiàng)的系數(shù)不一定相等.(3)二項(xiàng)展開(kāi)式中的二項(xiàng)式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項(xiàng)起,次數(shù)由n次逐項(xiàng)減少1次直到0次,同時(shí)字母b按升冪排列,次數(shù)由0次逐項(xiàng)增加1次直到n次.1.判斷(正確的打“√”,錯(cuò)誤的打“×”)(1)(a+b)n展開(kāi)式中共有n項(xiàng). ( )(2)在公式中,交換a,b的順序?qū)Ω黜?xiàng)沒(méi)有影響. ( )(3)Cknan-kbk是(a+b)n展開(kāi)式中的第k項(xiàng). ( )(4)(a-b)n與(a+b)n的二項(xiàng)式展開(kāi)式的二項(xiàng)式系數(shù)相同. ( )[解析] (1)× 因?yàn)?a+b)n展開(kāi)式中共有n+1項(xiàng).(2)× 因?yàn)槎?xiàng)式的第k+1項(xiàng)Cknan-kbk和(b+a)n的展開(kāi)式的第k+1項(xiàng)Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因?yàn)镃knan-kbk是(a+b)n展開(kāi)式中的第k+1項(xiàng).(4)√ 因?yàn)?a-b)n與(a+b)n的二項(xiàng)式展開(kāi)式的二項(xiàng)式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小組有20名射手,其中1,2,3,4級(jí)射手分別為2,6,9,3名.又若選1,2,3,4級(jí)射手參加比賽,則在比賽中射中目標(biāo)的概率分別為0.85,0.64,0.45,0.32,今隨機(jī)選一人參加比賽,則該小組比賽中射中目標(biāo)的概率為_(kāi)_______. 【解析】設(shè)B表示“該小組比賽中射中目標(biāo)”,Ai(i=1,2,3,4)表示“選i級(jí)射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產(chǎn)品各有12件和10件,每批產(chǎn)品中各有1件廢品,現(xiàn)在先從第1批產(chǎn)品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為_(kāi)_______. 【解析】設(shè)A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號(hào)的產(chǎn)品,已知其中由一廠生產(chǎn)的占 30%, 二廠生產(chǎn)的占 50% , 三廠生產(chǎn)的占 20%, 又知這三個(gè)廠的產(chǎn)品次品率分別為2% , 1%, 1%,問(wèn)從這批產(chǎn)品中任取一件是次品的概率是多少?
4.有8種不同的菜種,任選4種種在不同土質(zhì)的4塊地里,有 種不同的種法. 解析:將4塊不同土質(zhì)的地看作4個(gè)不同的位置,從8種不同的菜種中任選4種種在4塊不同土質(zhì)的地里,則本題即為從8個(gè)不同元素中任選4個(gè)元素的排列問(wèn)題,所以不同的種法共有A_8^4 =8×7×6×5=1 680(種).答案:1 6805.用1、2、3、4、5、6、7這7個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的四位數(shù).(1)這些四位數(shù)中偶數(shù)有多少個(gè)?能被5整除的有多少個(gè)?(2)這些四位數(shù)中大于6 500的有多少個(gè)?解:(1)偶數(shù)的個(gè)位數(shù)只能是2、4、6,有A_3^1種排法,其他位上有A_6^3種排法,由分步乘法計(jì)數(shù)原理,知共有四位偶數(shù)A_3^1·A_6^3=360(個(gè));能被5整除的數(shù)個(gè)位必須是5,故有A_6^3=120(個(gè)).(2)最高位上是7時(shí)大于6 500,有A_6^3種,最高位上是6時(shí),百位上只能是7或5,故有2×A_5^2種.由分類(lèi)加法計(jì)數(shù)原理知,這些四位數(shù)中大于6 500的共有A_6^3+2×A_5^2=160(個(gè)).
解析:因?yàn)闇p法和除法運(yùn)算中交換兩個(gè)數(shù)的位置對(duì)計(jì)算結(jié)果有影響,所以屬于組合的有2個(gè).答案:B2.若A_n^2=3C_(n"-" 1)^2,則n的值為( )A.4 B.5 C.6 D.7 解析:因?yàn)锳_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故選C.答案:C 3.若集合A={a1,a2,a3,a4,a5},則集合A的子集中含有4個(gè)元素的子集共有 個(gè). 解析:滿(mǎn)足要求的子集中含有4個(gè)元素,由集合中元素的無(wú)序性,知其子集個(gè)數(shù)為C_5^4=5.答案:54.平面內(nèi)有12個(gè)點(diǎn),其中有4個(gè)點(diǎn)共線,此外再無(wú)任何3點(diǎn)共線,以這些點(diǎn)為頂點(diǎn),可得多少個(gè)不同的三角形?解:(方法一)我們把從共線的4個(gè)點(diǎn)中取點(diǎn)的多少作為分類(lèi)的標(biāo)準(zhǔn):第1類(lèi),共線的4個(gè)點(diǎn)中有2個(gè)點(diǎn)作為三角形的頂點(diǎn),共有C_4^2·C_8^1=48(個(gè))不同的三角形;第2類(lèi),共線的4個(gè)點(diǎn)中有1個(gè)點(diǎn)作為三角形的頂點(diǎn),共有C_4^1·C_8^2=112(個(gè))不同的三角形;第3類(lèi),共線的4個(gè)點(diǎn)中沒(méi)有點(diǎn)作為三角形的頂點(diǎn),共有C_8^3=56(個(gè))不同的三角形.由分類(lèi)加法計(jì)數(shù)原理,不同的三角形共有48+112+56=216(個(gè)).(方法二 間接法)C_12^3-C_4^3=220-4=216(個(gè)).
探究新知問(wèn)題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機(jī)抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機(jī)變量X的分布列.(1):采用有放回抽樣,隨機(jī)變量X服從二項(xiàng)分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨(dú)立,此時(shí)X服從二項(xiàng)分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項(xiàng)分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱(chēng)隨機(jī)變量X服從超幾何分布.
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第三冊(cè)》,第六章《計(jì)數(shù)原理》,本節(jié)課主本節(jié)課主要學(xué)習(xí)二項(xiàng)式系數(shù)的性質(zhì)
本節(jié)是在學(xué)習(xí)了二項(xiàng)式定理的基礎(chǔ)上,探究二項(xiàng)式系數(shù)的性質(zhì)。由于二項(xiàng)式系數(shù)組成的數(shù)列就是一個(gè)離散型函數(shù),引導(dǎo)學(xué)生從函數(shù)的角度研究二項(xiàng)式系數(shù)的性質(zhì),便于建立知識(shí)前后聯(lián)系,使學(xué)生運(yùn)用利用幾何直觀、數(shù)形結(jié)合、特殊到一般的數(shù)學(xué)思想進(jìn)行思考。
研究二項(xiàng)式系數(shù)這組特定的性質(zhì),對(duì)鞏固二項(xiàng)式定理,建立知識(shí)間的聯(lián)系,進(jìn)一步認(rèn)識(shí)組合數(shù)、進(jìn)行組合數(shù)的計(jì)算和變形都有重要作用,對(duì)后續(xù)學(xué)習(xí)微分方程也具有重要地位。
課程目標(biāo) | 學(xué)科素養(yǎng) |
A.能記住二項(xiàng)式系數(shù)的性質(zhì),并能靈活運(yùn)用性質(zhì)解決相關(guān)問(wèn)題. B.會(huì)用賦值法求二項(xiàng)展開(kāi)式系數(shù)的和,注意區(qū)分項(xiàng)的系數(shù)和二項(xiàng)式系數(shù). | 1.數(shù)學(xué)抽象:二項(xiàng)式系數(shù)的性質(zhì) 2.邏輯推理:運(yùn)用函數(shù)的觀點(diǎn)討論二項(xiàng)式系數(shù)的單調(diào)性 3.數(shù)學(xué)運(yùn)算:運(yùn)用二項(xiàng)式性質(zhì)解決問(wèn)題 4.幾何直觀:運(yùn)用函數(shù)圖像討論二項(xiàng)式系數(shù)的性質(zhì) |
重點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)(對(duì)稱(chēng)性、增減性與最大值和各二項(xiàng)式系數(shù)的和);
難點(diǎn):理解增減性與最大值時(shí),根據(jù)n的奇偶性確定相應(yīng)的分界點(diǎn);
利用賦值法證明二項(xiàng)式系數(shù)的性質(zhì),數(shù)學(xué)思想方法的滲透.
多媒體
教學(xué)過(guò)程 | 教學(xué)設(shè)計(jì)意圖 核心素養(yǎng)目標(biāo) | |||||||||||||||||||||||||||||||||||||||||
一、溫故知新 1.二項(xiàng)式定理 (a+b)n=_________________________ (n∈N*). (1)這個(gè)公式所表示的規(guī)律叫做二項(xiàng)式定理. (2)展開(kāi)式:等號(hào)右邊的多項(xiàng)式叫做(a+b)n的二項(xiàng)展開(kāi)式,展開(kāi)式中一共有______項(xiàng). (3)二項(xiàng)式系數(shù):各項(xiàng)的系數(shù)____ (k∈{0,1,2,…,n})叫做二項(xiàng)式系數(shù). Can+Can-1b+Can-2b2+…+Can-kbk+…+Cbn n+1 ;C 2.二項(xiàng)展開(kāi)式的通項(xiàng)公式 (a+b)n展開(kāi)式的第______項(xiàng)叫做二項(xiàng)展開(kāi)式的通項(xiàng),記作Tk+1=______. k+1 ;Can-kbk 二、新知探究 探究1:計(jì)算展開(kāi)式的二項(xiàng)式系數(shù)并填入下表 二項(xiàng)式系數(shù): 通過(guò)計(jì)算、填表、你發(fā)現(xiàn)了什么規(guī)律?
將上表寫(xiě)成如下形式: 思考:通過(guò)上表和上圖,能發(fā)現(xiàn)什么規(guī)律? 展開(kāi)式的二項(xiàng)式系數(shù) 我們還可以從函數(shù)的角度分析它們。可看成是以為自變量的函數(shù),其定義域是 我們還可以畫(huà)出它的圖像。 例如,當(dāng)時(shí), 函數(shù)()的圖像是7個(gè)離散的點(diǎn),如圖所示。 1.對(duì)稱(chēng)性 與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等,即. 2.增減性與最大值 當(dāng)k<時(shí),隨k的增加而增大;由對(duì)稱(chēng)性可知,當(dāng)k>時(shí),隨k的增加而減小.當(dāng)n是偶數(shù)時(shí),中間的一項(xiàng)取得最大值;當(dāng)n是奇數(shù)時(shí),中間的兩項(xiàng)相等,且同時(shí)取得最大值. 探究2.已知 = 3.各二項(xiàng)式系數(shù)的和 令x=1 得= 所以,的展開(kāi)式的各二項(xiàng)式系數(shù)之和為 1. 在(a+b)8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 ,在(a+b)9的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 . 解析:因?yàn)?/span>(a+b)8的展開(kāi)式中有9項(xiàng),所以中間一項(xiàng)的二項(xiàng)式系數(shù)最大,該項(xiàng)為 因?yàn)?/span>(a+b)9的展開(kāi)式中有10項(xiàng),所以中間兩項(xiàng)的二項(xiàng)式系數(shù)最大,這兩項(xiàng)分別為 答案:1.70a4b4 126a5b4與126a4b5 2. A=+…與B=+…的大小關(guān)系是( ) A.A>B B.A=B C.A不確定 解析:∵(1+1)n=+…+ (1-1)n=-…+(-1)n ∴+…=+…=2n-1,即A=B. 答案:B 三、典例解析 例3.求證:在的展開(kāi)式中,奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和等于偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和. 證明:在展開(kāi)式 =中, 令a=1,b=-1,得 即 因此 即在的展開(kāi)式中,奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和等于偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和. 二項(xiàng)展開(kāi)式中系數(shù)和的求法 (1)對(duì)形如(ax+b)n,(ax2+bx+c)m(a,b,c∈R,m,n∈N*)的式子求其展開(kāi)式的各項(xiàng)系數(shù)之和,常用賦值法,只需令x=1即可;對(duì)(ax+by)n(a,b∈R,n∈N*)的式子求其展開(kāi)式各項(xiàng)系數(shù)之和,只需令x=y=1即可. (2)一般地,若f(x)=a0+a1x+a2x2+…+anxn,則f(x)展開(kāi)式中各項(xiàng)系數(shù)之和為f(1), 奇數(shù)項(xiàng)系數(shù)之和為a0+a2+a4+…=, 偶數(shù)項(xiàng)系數(shù)之和為a1+a3+a5+…=. 跟蹤訓(xùn)練1. 在(2x-3y)9的展開(kāi)式中,求: (1)二項(xiàng)式系數(shù)之和; (2)各項(xiàng)系數(shù)之和; (3)所有奇數(shù)項(xiàng)系數(shù)之和. 解:設(shè)(2x-3y)9=a0x9+a1x8y+a2x7y2+…+a9y9. (1)二項(xiàng)式系數(shù)之和為+…+=29=512. (2)各項(xiàng)系數(shù)之和為a0+a1+a2+…+a9, 令x=1,y=1, 所以a0+a1+a2+…+a9=(2-3)9=-1. (3)令x=1,y=-1,可得 a0-a1+a2-…-a9=59, 又a0+a1+a2+…+a9=-1, 將兩式相加可得a0+a2+a4+a6+a8==976 562, 即所有奇數(shù)項(xiàng)系數(shù)之和為976 562. 例4.已知(1+2x)n的展開(kāi)式中第6項(xiàng)與第7項(xiàng)的系數(shù)相等,求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)和 系數(shù)最大的項(xiàng). 解:T6=(2x)5,T7=(2x)6,依題意有 25=26,解得n=8. ∴在(1+2x)8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 T5=(2x)4=1 120x4. 設(shè)第k+1項(xiàng)的系數(shù)最大,則有 解得5≤k≤6. ∴k=5或k=6(∵k∈{0,1,2,…,8}). ∴系數(shù)最大的項(xiàng)為T6=1 792x5,T7=1 792x6. 求二項(xiàng)展開(kāi)式中系數(shù)的最值的方法 (1)若二項(xiàng)展開(kāi)式的系數(shù)的絕對(duì)值與對(duì)應(yīng)二項(xiàng)式系數(shù)相等,可轉(zhuǎn)化為確定二項(xiàng)式系數(shù)的最值來(lái)解決. (2)若二項(xiàng)展開(kāi)式的系數(shù)為f(k)= 如求(a+bx)n(a,b∈R)的展開(kāi)式中系數(shù)最大的項(xiàng),一般是采用待定系數(shù)法,設(shè)其展開(kāi)式的各項(xiàng)系數(shù)分別為A1,A2,…,An+1,且第k+1項(xiàng)系數(shù) 最大,應(yīng)解出k,即得系數(shù)最大的項(xiàng). 跟蹤訓(xùn)練2.已知的展開(kāi)式中,只有第6項(xiàng)的二項(xiàng)式系數(shù)最大. (1)求該展開(kāi)式中所有有理項(xiàng)的個(gè)數(shù); (2)求該展開(kāi)式中系數(shù)最大的項(xiàng). |
通過(guò)回顧二項(xiàng)式定理,從數(shù)學(xué)知識(shí)內(nèi)部提出問(wèn)題,引導(dǎo)學(xué)生觀察、發(fā)現(xiàn)二項(xiàng)式系數(shù)的性質(zhì)。發(fā)展學(xué)生邏輯推理、數(shù)學(xué)運(yùn)算、數(shù)學(xué)抽象和數(shù)學(xué)建模的核心素養(yǎng)。
讓學(xué)生親身經(jīng)歷了從特殊到一般,獲得二項(xiàng)式性質(zhì)的過(guò)程。發(fā)展學(xué)生邏輯推理,直觀想象、數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng)。
通過(guò)典例解析,讓學(xué)生體會(huì)利用二項(xiàng)式系數(shù)的性質(zhì),感受數(shù)學(xué)模型在數(shù)學(xué)應(yīng)用中的價(jià)值。發(fā)展學(xué)生邏輯推理,直觀想象、數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng)。
| |||||||||||||||||||||||||||||||||||||||||
三、達(dá)標(biāo)檢測(cè) 1.(1-x)13的展開(kāi)式中系數(shù)最小的項(xiàng)為( ) A.第6項(xiàng) B.第7項(xiàng) C.第8項(xiàng) D.第9項(xiàng) 解析:展開(kāi)式中共有14項(xiàng),中間兩項(xiàng)(第7,8項(xiàng))的二項(xiàng)式系數(shù)最大.故系數(shù)最小的項(xiàng)為第8項(xiàng),系數(shù)最大的項(xiàng)為第7項(xiàng). 答案:C 2.已知+2+22+…+2n=729,則的值等于( ) A.64 B.32 C.63 D.31 解析:由已知(1+2)n=3n=729,解得n=6. 則=32. 答案:B 3.已知(1+x)n的展開(kāi)式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為( ) 解析:因?yàn)?/span>(1+x)n的展開(kāi)式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等, 所以,解得n=10, 所以二項(xiàng)式(1+x)10中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為210=29. 答案:D 4.已知+2xn的展開(kāi)式中前三項(xiàng)的二項(xiàng)式系數(shù)的和等于37,則展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù)為 . 解析:由=37,得1+n+n(n-1)=37, 解得n=8(負(fù)值舍去), 則第5項(xiàng)的二項(xiàng)式系數(shù)最大, T5=(2x)4=x4,該項(xiàng)的系數(shù)為 答案: 5.已知+2xn,若展開(kāi)式中第5項(xiàng)、第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù). |
预览结束,下载后可阅读高清完整版文档
立即下载轉(zhuǎn)載請(qǐng)注明出處!本文地址:
http://m.17025calibrations.com/worddetails_99132725.html1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動(dòng)課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽(tīng)課又專(zhuān)注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績(jī)只代表昨天,并不能說(shuō)明你 明天就一定也很優(yōu)秀。所以,每個(gè)人都應(yīng)該把成績(jī)當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛(ài)說(shuō)話 ,但勤奮好學(xué),誠(chéng)實(shí)可愛(ài);你做事踏實(shí)、認(rèn)真、為 人忠厚 ,是一個(gè)品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動(dòng),能按時(shí)完成老師布置的作業(yè),經(jīng)過(guò)努力 ,各 科成績(jī)都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計(jì)劃性,但在老師看來(lái),你的潛力還沒(méi)有完全發(fā)揮出來(lái),學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。
一是要把好正確導(dǎo)向。嚴(yán)格落實(shí)主體責(zé)任,逐條逐項(xiàng)細(xì)化任務(wù),層層傳導(dǎo)壓力。要抓實(shí)思想引領(lǐng),把理論學(xué)習(xí)貫穿始終,全身心投入主題教育當(dāng)中;把理論學(xué)習(xí)、調(diào)查研究、推動(dòng)發(fā)展、檢視整改等有機(jī)融合、一體推進(jìn);堅(jiān)持學(xué)思用貫通、知信行統(tǒng)一,努力在以學(xué)鑄魂、以學(xué)增智、以學(xué)正風(fēng)、以學(xué)促干方面取得實(shí)實(shí)在在的成效。更加深刻領(lǐng)會(huì)到******主義思想的科學(xué)體系、核心要義、實(shí)踐要求,進(jìn)一步堅(jiān)定了理想信念,錘煉了政治品格,增強(qiáng)了工作本領(lǐng),要自覺(jué)運(yùn)用的創(chuàng)新理論研究新情況、解決新問(wèn)題,為西北礦業(yè)高質(zhì)量發(fā)展作出貢獻(xiàn)。二是要加強(qiáng)應(yīng)急處事能力。認(rèn)真組織開(kāi)展好各類(lèi)理論宣講和文化活動(dòng),發(fā)揮好基層ys*t陣地作用,加強(qiáng)分析預(yù)警和應(yīng)對(duì)處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導(dǎo)作用。要堅(jiān)決唱響主旋律,為“打造陜甘片區(qū)高質(zhì)量發(fā)展標(biāo)桿礦井”、建設(shè)“七個(gè)一流”能源集團(tuán)和“精優(yōu)智特”新淄礦營(yíng)造良好的輿論氛圍。三是加強(qiáng)輿情的搜集及應(yīng)對(duì)。加強(qiáng)職工群眾熱點(diǎn)問(wèn)題的輿論引導(dǎo),做好輿情的收集、分析和研判,把握時(shí)、度、效,重視網(wǎng)上和網(wǎng)下輿情應(yīng)對(duì)。
二是深耕意識(shí)形態(tài)。加強(qiáng)意識(shí)形態(tài)、網(wǎng)絡(luò)輿論陣地建設(shè)和管理,把握重大時(shí)間節(jié)點(diǎn),科學(xué)分析研判意識(shí)形態(tài)領(lǐng)域情況,旗幟鮮明反對(duì)和抵制各種錯(cuò)誤觀點(diǎn),有效防范處置風(fēng)險(xiǎn)隱患。積極響應(yīng)和高效落實(shí)上級(jí)黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設(shè),鍛造堅(jiān)強(qiáng)有力的基層黨組織。一是提高基層黨組織建設(shè)力量。壓實(shí)黨建責(zé)任,從政治高度檢視分析黨建工作短板弱項(xiàng),有針對(duì)性提出改進(jìn)工作的思路和辦法。持續(xù)優(yōu)化黨建考核評(píng)價(jià)體系。二是縱深推進(jìn)基層黨建,打造堅(jiān)強(qiáng)戰(zhàn)斗堡壘。創(chuàng)新實(shí)施黨建工作模式,繼續(xù)打造黨建品牌,抓實(shí)“五強(qiáng)五化”黨組織創(chuàng)建,廣泛開(kāi)展黨員教育學(xué)習(xí)活動(dòng),以實(shí)際行動(dòng)推動(dòng)黨建工作和經(jīng)營(yíng)發(fā)展目標(biāo)同向、部署同步、工作同力。三是加強(qiáng)高素質(zhì)專(zhuān)業(yè)化黨員隊(duì)伍管理。配齊配強(qiáng)支部黨務(wù)工作者,把黨務(wù)工作崗位作為培養(yǎng)鍛煉干部的重要平臺(tái)。
二要專(zhuān)注于解決問(wèn)題。根據(jù)市委促進(jìn)經(jīng)濟(jì)轉(zhuǎn)型的總要求,聚焦“四個(gè)經(jīng)濟(jì)”和“雙中心”的建設(shè),深入了解基層科技工作、學(xué)術(shù)交流、組織建設(shè)等方面的實(shí)際情況,全面了解群眾的真實(shí)需求,解決相關(guān)問(wèn)題,并針對(duì)科技工作中存在的問(wèn)題,采取實(shí)際措施,推動(dòng)問(wèn)題的實(shí)際解決。三要專(zhuān)注于急難愁盼問(wèn)題。優(yōu)化“民聲熱線”,推動(dòng)解決一系列基層民生問(wèn)題,努力將“民聲熱線”打造成主題教育的關(guān)鍵工具和展示平臺(tái)。目前,“民聲熱線”已回應(yīng)了群眾的8個(gè)政策問(wèn)題,并成功解決其中7個(gè)問(wèn)題,真正使人民群眾感受到了實(shí)質(zhì)性的變化和效果。接下來(lái),我局將繼續(xù)深入學(xué)習(xí)主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗(yàn)和方法,以更高的要求、更嚴(yán)格的紀(jì)律、更實(shí)際的措施和更好的成果,不斷深化主題教育的實(shí)施,展現(xiàn)新的風(fēng)貌和活力。
今年3月,市政府出臺(tái)《關(guān)于加快打造更具特色的“水運(yùn)XX”的意見(jiàn)》,提出到2025年,“蘇南運(yùn)河全線達(dá)到準(zhǔn)二級(jí),實(shí)現(xiàn)2000噸級(jí)舶全天候暢行”。作為“水運(yùn)XX”建設(shè)首戰(zhàn),諫壁閘一線閘擴(kuò)容工程開(kāi)工在即,但項(xiàng)目開(kāi)工前還有許多實(shí)際問(wèn)題亟需解決。結(jié)合“到一線去”專(zhuān)項(xiàng)行動(dòng),我們深入到諫壁閘一線,詳細(xì)了解工程前期進(jìn)展,實(shí)地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設(shè)計(jì)方案。牢牢把握高質(zhì)量發(fā)展這個(gè)首要任務(wù),在學(xué)思踐悟中開(kāi)創(chuàng)建功之業(yè),堅(jiān)定扛起“走在前、挑大梁、多做貢獻(xiàn)”的交通責(zé)任,奮力推動(dòng)交通運(yùn)輸高質(zhì)量發(fā)展持續(xù)走在前列。以學(xué)促干建新功,關(guān)鍵在推動(dòng)高質(zhì)量發(fā)展持續(xù)走在前列。新時(shí)代中國(guó)特色社會(huì)主義思想著重強(qiáng)調(diào)立足新發(fā)展階段、貫徹新發(fā)展理念、構(gòu)建新發(fā)展格局,推動(dòng)高質(zhì)量發(fā)展,提出了新發(fā)展階段我國(guó)經(jīng)濟(jì)高質(zhì)量發(fā)展要堅(jiān)持的主線、重大戰(zhàn)略目標(biāo)、工作總基調(diào)和方法論等,深刻體現(xiàn)了這一思想的重要實(shí)踐價(jià)值。
三、2024年工作計(jì)劃一是完善基層公共文化服務(wù)管理標(biāo)準(zhǔn)化模式,持續(xù)在公共文化服務(wù)精準(zhǔn)化上探索創(chuàng)新,圍繞群眾需求,不斷調(diào)整公共文化服務(wù)內(nèi)容和形式,提升群眾滿(mǎn)意度。推進(jìn)鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開(kāi)展活動(dòng)的上傳力度,確保年度目標(biāo)任務(wù)按時(shí)保質(zhì)保量完成。服務(wù)“雙減”政策,持續(xù)做好校外培訓(xùn)機(jī)構(gòu)審批工作,結(jié)合我區(qū)工作實(shí)際和文旅資源優(yōu)勢(shì),進(jìn)一步豐富我市義務(wù)教育階段學(xué)生“雙減”后的課外文化生活,推動(dòng)“雙減”政策走深走實(shí)。二是結(jié)合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進(jìn)全域旅游示范區(qū)創(chuàng)建,嚴(yán)格按照《國(guó)家全域旅游示范區(qū)驗(yàn)收標(biāo)準(zhǔn)》要求,極推動(dòng)旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設(shè)施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。
1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動(dòng)課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽(tīng)課又專(zhuān)注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績(jī)只代表昨天,并不能說(shuō)明你 明天就一定也很優(yōu)秀。所以,每個(gè)人都應(yīng)該把成績(jī)當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛(ài)說(shuō)話 ,但勤奮好學(xué),誠(chéng)實(shí)可愛(ài);你做事踏實(shí)、認(rèn)真、為 人忠厚 ,是一個(gè)品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動(dòng),能按時(shí)完成老師布置的作業(yè),經(jīng)過(guò)努力 ,各 科成績(jī)都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計(jì)劃性,但在老師看來(lái),你的潛力還沒(méi)有完全發(fā)揮出來(lái),學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。
二是全力推進(jìn)在談項(xiàng)目落地。認(rèn)真落實(shí)“首席服務(wù)官”責(zé)任制,切實(shí)做好上海中道易新材料有機(jī)硅復(fù)配硅油項(xiàng)目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項(xiàng)目、天勤生物生物實(shí)驗(yàn)基地項(xiàng)目、愷德集團(tuán)文旅康養(yǎng)產(chǎn)業(yè)項(xiàng)目、三一重能風(fēng)力發(fā)電項(xiàng)目、中國(guó)供銷(xiāo)集團(tuán)冷鏈物流項(xiàng)目跟蹤對(duì)接,協(xié)調(diào)解決項(xiàng)目落戶(hù)過(guò)程中存在的困難和問(wèn)題,力爭(zhēng)早日實(shí)現(xiàn)成果轉(zhuǎn)化。三是強(qiáng)化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調(diào)度及業(yè)務(wù)指導(dǎo),貫徹落實(shí)項(xiàng)目建設(shè)“6421”時(shí)限及“每月通報(bào)、季度排名、半年分析、年終獎(jiǎng)勵(lì)”相關(guān)要求,通過(guò)“比實(shí)績(jī)、曬單子、亮數(shù)據(jù)、拼項(xiàng)目”,進(jìn)一步營(yíng)造“比學(xué)趕超”濃厚氛圍,掀起招商引資和項(xiàng)目建設(shè)新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務(wù)。
(二)堅(jiān)持問(wèn)題導(dǎo)向,持續(xù)改進(jìn)工作。要繼續(xù)在提高工作效率和服務(wù)質(zhì)量上下功夫,積極學(xué)習(xí)借鑒其他部門(mén)及xx關(guān)于“四零”承諾服務(wù)創(chuàng)建工作的先進(jìn)經(jīng)驗(yàn),同時(shí)主動(dòng)查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點(diǎn)問(wèn)題。要進(jìn)一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡(jiǎn)審批程序,縮短辦事路徑,壓縮辦理時(shí)限,深化政務(wù)公開(kāi),努力為企業(yè)當(dāng)好“保姆”,為群眾提供便利,不斷適應(yīng)新時(shí)代人民群眾對(duì)政務(wù)服務(wù)的新需求。(三)深化內(nèi)外宣傳,樹(shù)立良好形象。要深入挖掘并及時(shí)總結(jié)作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作中形成的典型經(jīng)驗(yàn)做法,進(jìn)一步強(qiáng)化內(nèi)部宣傳與工作交流,推動(dòng)全市創(chuàng)建工作質(zhì)效整體提升。要面向社會(huì)和公眾莊嚴(yán)承諾并積極踐諾,主動(dòng)接受監(jiān)督,同時(shí)要依托電臺(tái)、電視臺(tái)、報(bào)紙及微信、微博等各類(lèi)媒體大力宣傳xx隊(duì)伍作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作成果,不斷擴(kuò)大社會(huì)知情面和群眾知曉率。
(五)服務(wù)群眾提效能方面。一是政府采購(gòu)服務(wù)提檔升級(jí)。建成“全區(qū)一張網(wǎng)”,各類(lèi)采購(gòu)主體所有業(yè)務(wù)實(shí)現(xiàn)“一網(wǎng)通辦,提升辦事效率;全面實(shí)現(xiàn)遠(yuǎn)程開(kāi)標(biāo)和不見(jiàn)面開(kāi)標(biāo),降低供應(yīng)商成本;要求400萬(wàn)元以上工程采購(gòu)項(xiàng)目預(yù)留采購(gòu)份額提高至采購(gòu)比例的40%以上,支持中小企業(yè)發(fā)展。2022年,我區(qū)政府采購(gòu)榮獲”中國(guó)政府采購(gòu)獎(jiǎng)“,并以全國(guó)第一的成績(jī)獲得數(shù)字政府采購(gòu)耕耘獎(jiǎng)、新聞宣傳獎(jiǎng),以各省中第一的成績(jī)獲得年度創(chuàng)新獎(jiǎng)。二是財(cái)政電子票據(jù)便民利民。全區(qū)財(cái)政電子票據(jù)開(kāi)具量突破1億張,涉及資金810.87億元。特別是在醫(yī)療領(lǐng)域,全區(qū)241家二級(jí)以上公立醫(yī)療機(jī)構(gòu)均已全部上線醫(yī)療收費(fèi)電子票據(jù),大大解決了群眾看病排隊(duì)等待時(shí)間長(zhǎng)、繳費(fèi)取票不方便的問(wèn)題,讓患者”省心、省時(shí)、省力“。
一、活動(dòng)開(kāi)展情況及成效按照省委、市委對(duì)“大學(xué)習(xí)、大討論、大調(diào)研”活動(dòng)的部署要求,縣委立即行動(dòng),于8月20日組織召開(kāi)常委會(huì)會(huì)議,專(zhuān)題傳達(dá)學(xué)習(xí)省委X在讀書(shū)班上的講話精神。5月2日,縣委召開(kāi)“大學(xué)習(xí)、大討論、大調(diào)研”活動(dòng)推進(jìn)會(huì),及時(shí)對(duì)活動(dòng)開(kāi)展的相關(guān)要求、任務(wù)進(jìn)行再安排再部署,會(huì)后制定并下發(fā)了活動(dòng)實(shí)施方案、重點(diǎn)課題調(diào)研方案、宣傳報(bào)道方案等系列文件,有效指導(dǎo)活動(dòng)開(kāi)展。5月17日、9月1日,縣委再次召開(kāi)常委會(huì)會(huì)議,專(zhuān)題聽(tīng)取“大學(xué)習(xí)、大討論、大調(diào)研”活動(dòng)開(kāi)展情況匯報(bào),研究部署下階段工作。9月13日,召開(kāi)全縣“大學(xué)習(xí)大討論大調(diào)研”活動(dòng)工作推進(jìn)座談會(huì),深入貫徹全省、全市“大學(xué)習(xí)大討論大調(diào)研”活動(dòng)工作推進(jìn)座談會(huì)精神,總結(jié)交流活動(dòng)經(jīng)驗(yàn),對(duì)下一階段活動(dòng)開(kāi)展進(jìn)行安排部署?!按髮W(xué)習(xí)、大討論、大調(diào)研”活動(dòng)的有序開(kāi)展,為砥礪前行、底部崛起的X注入了強(qiáng)大的精神動(dòng)力。
1.市政基礎(chǔ)設(shè)施項(xiàng)目5項(xiàng),總建設(shè)里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進(jìn)場(chǎng),項(xiàng)目部基本建成,正在辦理臨時(shí)用地、用電及用水等相關(guān)工作;中鐵佰和佰樂(lè)(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學(xué)院配套道路項(xiàng)目在黃麓鎮(zhèn)完成圍墻建設(shè)后即可進(jìn)場(chǎng)施工。2.公益性建設(shè)項(xiàng)目6項(xiàng),總建筑面積15.62萬(wàn)㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀(jì)新都小學(xué)擴(kuò)建工程已完成施工、監(jiān)理招標(biāo)掛網(wǎng),2月上旬完成全部招標(biāo)工作;合肥職業(yè)技術(shù)學(xué)院大維修三期已完成招標(biāo)工作,近期簽訂施工合同后組織進(jìn)場(chǎng)施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標(biāo)工作;半湯療養(yǎng)院智能化工程因投訴暫時(shí)中止;巢湖市中醫(yī)院(中西醫(yī)結(jié)合醫(yī)院)新建工程正在按照既定計(jì)劃推進(jìn),預(yù)計(jì)4月中下旬掛網(wǎng)招標(biāo)。