提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word模板 > 教育教學(xué) > 課件教案> 用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

东北丰满少妇多毛大隂户,中文字幕乱码中文乱码二区,高清不卡的无码在线视频免费观看

  • 收藏模板
    下載模板

您可能喜歡的文檔查看更多

  • 用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 空間向量基本定理教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    空間向量基本定理教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長(zhǎng)方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計(jì)

本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第一章《空間向量與立體幾何》,本節(jié)課主要學(xué)習(xí)運(yùn)用空間向量解決計(jì)算空間距離問題。

在向量坐標(biāo)化的基礎(chǔ)上,將空間中點(diǎn)到線、點(diǎn)到面、兩條平行線及二平行平面角的距離問題,首先轉(zhuǎn)化為向量語言,進(jìn)而運(yùn)用向量的坐標(biāo)表示,從而實(shí)現(xiàn)運(yùn)用空間向量解決空間距離問題,為學(xué)生學(xué)習(xí)立體幾何提供了新的方法和新的觀點(diǎn),為培養(yǎng)學(xué)生思維提供了更廣闊的空間。

課件教案

課程目標(biāo)

學(xué)科素養(yǎng)

A.能用向量語言表示點(diǎn)到直線、點(diǎn)到平面、互相平行的直線、互相平行的平面的距離問題.

B.能用向量方法解決點(diǎn)到直線、點(diǎn)到平面、互相平行的直線、互相平行的平面的距離問題.

1.數(shù)學(xué)抽象:向量語言表述空間距離

2.邏輯推理:運(yùn)用向量運(yùn)算求解空間距離的原理;

3.數(shù)學(xué)運(yùn)算:空間向量的坐標(biāo)運(yùn)算解決空間距離問題.

1.教學(xué)重點(diǎn):理解運(yùn)用向量方法求空間距離的原理

2.教學(xué)難點(diǎn):掌握運(yùn)用空間向量求空間距離的方法

多媒體

教學(xué)過程

教學(xué)設(shè)計(jì)意圖

核心素養(yǎng)目標(biāo)

一、情境導(dǎo)學(xué)

如圖,在蔬菜大棚基地有一條筆直的公路,某人要在點(diǎn)A處,修建一個(gè)蔬菜存儲(chǔ)庫(kù)。如何在公路上選擇一個(gè)點(diǎn),修一條公路到達(dá)A點(diǎn),要想使這個(gè)路線長(zhǎng)度理論上最短,應(yīng)該如何設(shè)計(jì)?

問題:空間中包括哪些距離?求解空間距離常用的方法有哪些?

答案:點(diǎn)到直線、點(diǎn)到平面、兩條平行線及兩個(gè)平行平面的距離; 傳統(tǒng)方法和向量法.

二、探究新知

一、點(diǎn)到直線的距離、兩條平行直線之間的距離

1.點(diǎn)到直線的距離

已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)=a,則向量在直線l上的投影向量=(aμ)μ.點(diǎn)P到直線l的距離為PQ=.

2.兩條平行直線之間的距離

求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.

點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長(zhǎng)度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問題.

1.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 .

答案:

解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),=(1,-2,1),

=(1,0,-2),∴||=,

∴直線EF的單位方向向量μ=(1,-2,1),

∴點(diǎn)A到直線EF的距離.

二、點(diǎn)到平面的距離、兩個(gè)平行平面之間的距離

點(diǎn)到平面的距離

已知平面α的法向量為n,A是平面α內(nèi)的定點(diǎn),P是平面α外一點(diǎn).過點(diǎn)P作平面α的垂線l,交平面α于點(diǎn)Q,則點(diǎn)P到平面α的距離為PQ=.

點(diǎn)睛:1.實(shí)質(zhì)上,n是直線l的方向向量,點(diǎn)P到平面α的距離就是在直線l上的投影向量的長(zhǎng)度.

2.如果一條直線l與一個(gè)平面α平行,可在直線l上任取一點(diǎn)P,將線面距離轉(zhuǎn)化為點(diǎn)P到平面α的距離求解.

3.兩個(gè)平行平面之間的距離

如果兩個(gè)平面α,β互相平行,在其中一個(gè)平面α內(nèi)任取一點(diǎn)P,可將兩個(gè)平行平面的距離轉(zhuǎn)化為點(diǎn)P到平面β的距離求解.

2.在正四棱柱ABCD-A1B1C1D1中,底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為4,則點(diǎn)B1到平面AD1C的距離為 .

答案: 解析:以D為坐標(biāo)原點(diǎn),DA,DC,DD1所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,則A(2,0,0),C(0,2,0),D1(0,0,4),B1(2,2,4),

則=(-2,2,0),=(-2,0,4),=(-2,-2,0),

設(shè)平面AD1C的法向量為n=(x,y,z),

取z=1,則x=y=2,所以n=(2,2,1).

所以點(diǎn)B1到平面AD1C的距離d=.

三、典例解析

例1.已知直三棱柱ABC-A1B1C1中,AA1=1,AB=4,BC=3,∠ABC=90,求點(diǎn)B到直線A1C1的距離.

解:以B為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則A1(4,0,1),C1(0,3,1),所以直線A1C1的方向向量=(-4,3,0),=(0,3,1),所以點(diǎn)B到直線A1C1的距離d==

用向量法求點(diǎn)到直線的距離時(shí)需注意以下幾點(diǎn):

(1)不必找點(diǎn)在直線上的垂足以及垂線段;

(2)在直線上可以任意選點(diǎn),但一般選較易求得坐標(biāo)的特殊點(diǎn);

(3)直線的方向向量可以任取,但必須保證計(jì)算正確.

延伸探究1 例1中的條件不變,若M,N分別是A1B1,AC的中點(diǎn),試求點(diǎn)C1到直線MN的距離.

解:如例1解中建立空間直角坐標(biāo)系(圖略).

則M(2,0,1),N,C1(0,3,1),

所以直線MN的方向向量為,=(-2,3,0),

所以點(diǎn)C1到MN的距離d=.

延伸探究2 將條件中直三棱柱改為所有棱長(zhǎng)均為2的直三棱柱,求點(diǎn)B到A1C1的距離.

解:以B為坐標(biāo)原點(diǎn),分別以BA,過B垂直于BA的直線,BB1為x軸,y軸,z軸建立

如圖所示的空間直角坐標(biāo)系,

則B(0,0,0),A1(2,0,2),C1(1,,2),

所以A1C1的方向向量=(-1,,0),=(1,,2),

所以點(diǎn)B到直線A1C1的距離.

例2 在三棱錐S-ABC中,△ABC是邊長(zhǎng)為4的正三角形,平面SAC⊥平面ABC,SA=SC=2

M,N分別為AB,SB的中點(diǎn),如圖所示.求點(diǎn)B到平面CMN的距離.

思路分析借助平面SAC⊥平面ABC的性質(zhì),建立空間直角坐標(biāo)系,先求平面CMN的法向量,再求距離.

解:取AC的中點(diǎn)O,連接OS,OB.

∵SA=SC,AB=BC,∴AC⊥SO,AC⊥BO.

∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC,

∴SO⊥平面ABC.

又BO?平面ABC,∴SO⊥BO.

如圖所示,分別以O(shè)A,OB,OS所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系Oxyz,則B(0,2,0),C(-2,0,0),S(0,0,2),M(1,,0),N(0,).

∴=(3,,0),=(-1,0,),=(-1,,0).

設(shè)n=(x,y,z)為平面CMN的一個(gè)法向量,

則取z=1,

則x=,y=-,∴n=(,-,1).

∴點(diǎn)B到平面CMN的距離d=.


求點(diǎn)到平面的距離的主要方法

(1)作點(diǎn)到平面的垂線,點(diǎn)到垂足的距離即為點(diǎn)到平面的距離.

(2)在三棱錐中用等體積法求解.

(3)向量法:d=(n為平面的法向量,A為平面上一點(diǎn),MA為過點(diǎn)A的斜線段)

跟蹤訓(xùn)練1 在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中點(diǎn).

(1)求證:B1C∥平面A1BD;

(2)求直線B1C到平面A1BD的距離.

(1)證明:連接AB1交A1B于點(diǎn)E,連接DE.

?B1C∥平面A1BD.

(2)解:因?yàn)锽1C∥平面A1BD,所以B1C到平面A1BD的距離就等于點(diǎn)B1到平面A1BD的距離.

如圖建立坐標(biāo)系,則B1(0,2,3),B(0,2,0),A1(-1,0,3),

=(0,2,3),=(0,2,0),=(-1,0,3).

設(shè)平面A1BD的法向量為n=(x,y,z),所以所以n=(3,0,1).

所求距離為d=.

金題典例 如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90,BC=2,CC1=4,點(diǎn)E在棱BB1上,EB1=1,D,F,G分別為CC1,B1C1,A1C1的中點(diǎn),EF與B1D相交于點(diǎn)H.

(1)求證:B1D⊥平面ABD;

(2)求證:平面EGF∥平面ABD;

(3)求平面EGF與平面ABD的距離.

思路分析:根據(jù)兩個(gè)平行平面間距離的定義,可將平面與平面間的距離轉(zhuǎn)化為一個(gè)平面內(nèi)一點(diǎn)到另一個(gè)平面的距離,即點(diǎn)面距.

(1)證明:如圖所示建立空間直角坐標(biāo)系,

設(shè)AB=a,則A1(a,0,0),B1(0,0,0),C1(0,2,0),F(0,1,0),E(0,0,1),A(a,0,4),B(0,0,4),

D(0,2,2),G.

所以=(0,2,2),=(-a,0,0),=(0,2,-2).

所以=0+0+0=0,=0+4-4=0.

所以,

所以B1D⊥AB,B1D⊥BD.

又AB∩BD=B,所以B1D⊥平面ABD.


通過生活中的現(xiàn)實(shí)情況,幫助學(xué)生回顧空間距離的概念,并提出運(yùn)用向量解空間距離的問題,引導(dǎo)學(xué)生回顧空間中線線、線面、面面的平行問題的解法方法,進(jìn)一步體會(huì)空間幾何問題代數(shù)化的基本思想

由基本問題出發(fā),讓學(xué)生掌握運(yùn)用空間向量解決空間距離問題的基本原理,實(shí)現(xiàn)將立體幾何問題向量化。發(fā)展學(xué)生邏輯推理,數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng)。

通過典型例題的分析和解決,讓學(xué)生感受空間向量坐標(biāo)運(yùn)算在解決立體幾何問題的應(yīng)用。發(fā)展學(xué)生數(shù)學(xué)抽象、邏輯推理的核心素養(yǎng)。

通過典例解析,進(jìn)一步讓學(xué)生體會(huì)空間向量坐標(biāo)運(yùn)算在解決立體幾何中的應(yīng)用,提升推理論證能力,提高學(xué)生的數(shù)學(xué)運(yùn)算及邏輯推理的核心素養(yǎng)。

三、達(dá)標(biāo)檢測(cè)

1.兩平行平面α,β分別經(jīng)過坐標(biāo)原點(diǎn)O和點(diǎn)A(2,1,1),且兩平面的一個(gè)法向量n=(-1,0,1),則兩平面間的距離是( )

答案:B

解析:∵兩平行平面α,β分別經(jīng)過坐標(biāo)原點(diǎn)O和點(diǎn)A(2,1,1),

=(2,1,1),且兩平面的一個(gè)法向量n=(-1,0,1),

∴兩平面間的距離d=.故選B.

2.若三棱錐P-ABC的三條側(cè)棱兩兩垂直,且滿足PA=PB=PC=1,則點(diǎn)P到平面ABC的距離是( )

答案:D

解析:分別以PA,PB,PC所在的直線為x軸,y軸,z軸建立空間直角坐標(biāo)系(圖略),則A(1,0,0),B(0,1,0),C(0,0,1).可以求得平面ABC的一個(gè)

法向量為n=(1,1,1),則d=.

3.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,O是平面A1B1C1D1的中心,則O到平面ABC1D1的距離是( )

答案:B

解析:建立坐標(biāo)系如圖,則A(1,0,0),B(1,1,0),D1(0,0,1),O.

∴=(0,1,0),=(-1,0,1).

設(shè)n=(1,y,z)是平面ABC1D1的一個(gè)法向量,

則解得y=0,z=1,∴n=(1,0,1).

又,

∴點(diǎn)O到平面ABC1D1的距離為.

4.Rt△ABC的兩條直角邊BC=3,AC=4,PC⊥平面ABC,PC=,則點(diǎn)P到斜邊AB的距離是 .

答案:3

解析:以點(diǎn)C為坐標(biāo)原點(diǎn),CA,CB,CP所在直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系.則A(4,0,0),B(0,3,0),P,

所以=(-4,3,0),,

所以點(diǎn)P到AB的距離d==3.

5.棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,M,N分別是線段BB1,B1C1的中點(diǎn),則直線MN到平面ACD1的距離為 .

答案:

解析:如圖,以點(diǎn)D為坐標(biāo)原點(diǎn),DA,DC,DD1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系.

則D(0,0,0),C(0,1,0),D1(0,0,1),M,A(1,0,0),

∴=(-1,1,0),=(-1,0,1).

設(shè)平面ACD1的法向量為n=(x,y,z),

令x=1,則y=z=1,∴n=(1,1,1).

∴點(diǎn)M到平面ACD1的距離d=.

故直線MN到平面ACD1的距離為.

通過練習(xí)鞏固本節(jié)所學(xué)知識(shí),通過學(xué)生解決問題,發(fā)展學(xué)生的數(shù)學(xué)運(yùn)算、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。



  • 预览结束,下载后可阅读高清完整版文档

    立即下载
最新課件教案文檔
  • 精選高中生期末評(píng)語

    精選高中生期末評(píng)語

    1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動(dòng)課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績(jī)只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個(gè)人都應(yīng)該把成績(jī)當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛說話 ,但勤奮好學(xué),誠(chéng)實(shí)可愛;你做事踏實(shí)、認(rèn)真、為 人忠厚 ,是一個(gè)品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動(dòng),能按時(shí)完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績(jī)都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計(jì)劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。

  • 公司2024第一季度意識(shí)形態(tài)工作聯(lián)席會(huì)議總結(jié)

    公司2024第一季度意識(shí)形態(tài)工作聯(lián)席會(huì)議總結(jié)

    一是要把好正確導(dǎo)向。嚴(yán)格落實(shí)主體責(zé)任,逐條逐項(xiàng)細(xì)化任務(wù),層層傳導(dǎo)壓力。要抓實(shí)思想引領(lǐng),把理論學(xué)習(xí)貫穿始終,全身心投入主題教育當(dāng)中;把理論學(xué)習(xí)、調(diào)查研究、推動(dòng)發(fā)展、檢視整改等有機(jī)融合、一體推進(jìn);堅(jiān)持學(xué)思用貫通、知信行統(tǒng)一,努力在以學(xué)鑄魂、以學(xué)增智、以學(xué)正風(fēng)、以學(xué)促干方面取得實(shí)實(shí)在在的成效。更加深刻領(lǐng)會(huì)到******主義思想的科學(xué)體系、核心要義、實(shí)踐要求,進(jìn)一步堅(jiān)定了理想信念,錘煉了政治品格,增強(qiáng)了工作本領(lǐng),要自覺運(yùn)用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質(zhì)量發(fā)展作出貢獻(xiàn)。二是要加強(qiáng)應(yīng)急處事能力。認(rèn)真組織開展好各類理論宣講和文化活動(dòng),發(fā)揮好基層ys*t陣地作用,加強(qiáng)分析預(yù)警和應(yīng)對(duì)處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導(dǎo)作用。要堅(jiān)決唱響主旋律,為“打造陜甘片區(qū)高質(zhì)量發(fā)展標(biāo)桿礦井”、建設(shè)“七個(gè)一流”能源集團(tuán)和“精優(yōu)智特”新淄礦營(yíng)造良好的輿論氛圍。三是加強(qiáng)輿情的搜集及應(yīng)對(duì)。加強(qiáng)職工群眾熱點(diǎn)問題的輿論引導(dǎo),做好輿情的收集、分析和研判,把握時(shí)、度、效,重視網(wǎng)上和網(wǎng)下輿情應(yīng)對(duì)。

  • 關(guān)于2024年上半年工作總結(jié)和下半年工作計(jì)劃

    關(guān)于2024年上半年工作總結(jié)和下半年工作計(jì)劃

    二是深耕意識(shí)形態(tài)。加強(qiáng)意識(shí)形態(tài)、網(wǎng)絡(luò)輿論陣地建設(shè)和管理,把握重大時(shí)間節(jié)點(diǎn),科學(xué)分析研判意識(shí)形態(tài)領(lǐng)域情況,旗幟鮮明反對(duì)和抵制各種錯(cuò)誤觀點(diǎn),有效防范處置風(fēng)險(xiǎn)隱患。積極響應(yīng)和高效落實(shí)上級(jí)黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設(shè),鍛造堅(jiān)強(qiáng)有力的基層黨組織。一是提高基層黨組織建設(shè)力量。壓實(shí)黨建責(zé)任,從政治高度檢視分析黨建工作短板弱項(xiàng),有針對(duì)性提出改進(jìn)工作的思路和辦法。持續(xù)優(yōu)化黨建考核評(píng)價(jià)體系。二是縱深推進(jìn)基層黨建,打造堅(jiān)強(qiáng)戰(zhàn)斗堡壘。創(chuàng)新實(shí)施黨建工作模式,繼續(xù)打造黨建品牌,抓實(shí)“五強(qiáng)五化”黨組織創(chuàng)建,廣泛開展黨員教育學(xué)習(xí)活動(dòng),以實(shí)際行動(dòng)推動(dòng)黨建工作和經(jīng)營(yíng)發(fā)展目標(biāo)同向、部署同步、工作同力。三是加強(qiáng)高素質(zhì)專業(yè)化黨員隊(duì)伍管理。配齊配強(qiáng)支部黨務(wù)工作者,把黨務(wù)工作崗位作為培養(yǎng)鍛煉干部的重要平臺(tái)。

  • XX區(qū)民政局黨支部開展主題教育工作情況總結(jié)報(bào)告

    XX區(qū)民政局黨支部開展主題教育工作情況總結(jié)報(bào)告

    二要專注于解決問題。根據(jù)市委促進(jìn)經(jīng)濟(jì)轉(zhuǎn)型的總要求,聚焦“四個(gè)經(jīng)濟(jì)”和“雙中心”的建設(shè),深入了解基層科技工作、學(xué)術(shù)交流、組織建設(shè)等方面的實(shí)際情況,全面了解群眾的真實(shí)需求,解決相關(guān)問題,并針對(duì)科技工作中存在的問題,采取實(shí)際措施,推動(dòng)問題的實(shí)際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動(dòng)解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關(guān)鍵工具和展示平臺(tái)。目前,“民聲熱線”已回應(yīng)了群眾的8個(gè)政策問題,并成功解決其中7個(gè)問題,真正使人民群眾感受到了實(shí)質(zhì)性的變化和效果。接下來,我局將繼續(xù)深入學(xué)習(xí)主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗(yàn)和方法,以更高的要求、更嚴(yán)格的紀(jì)律、更實(shí)際的措施和更好的成果,不斷深化主題教育的實(shí)施,展現(xiàn)新的風(fēng)貌和活力。

  • 交通運(yùn)輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進(jìn)會(huì)上的匯報(bào)發(fā)言

    交通運(yùn)輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進(jìn)會(huì)上的匯報(bào)發(fā)言

    今年3月,市政府出臺(tái)《關(guān)于加快打造更具特色的“水運(yùn)XX”的意見》,提出到2025年,“蘇南運(yùn)河全線達(dá)到準(zhǔn)二級(jí),實(shí)現(xiàn)2000噸級(jí)舶全天候暢行”。作為“水運(yùn)XX”建設(shè)首戰(zhàn),諫壁閘一線閘擴(kuò)容工程開工在即,但項(xiàng)目開工前還有許多實(shí)際問題亟需解決。結(jié)合“到一線去”專項(xiàng)行動(dòng),我們深入到諫壁閘一線,詳細(xì)了解工程前期進(jìn)展,實(shí)地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設(shè)計(jì)方案。牢牢把握高質(zhì)量發(fā)展這個(gè)首要任務(wù),在學(xué)思踐悟中開創(chuàng)建功之業(yè),堅(jiān)定扛起“走在前、挑大梁、多做貢獻(xiàn)”的交通責(zé)任,奮力推動(dòng)交通運(yùn)輸高質(zhì)量發(fā)展持續(xù)走在前列。以學(xué)促干建新功,關(guān)鍵在推動(dòng)高質(zhì)量發(fā)展持續(xù)走在前列。新時(shí)代中國(guó)特色社會(huì)主義思想著重強(qiáng)調(diào)立足新發(fā)展階段、貫徹新發(fā)展理念、構(gòu)建新發(fā)展格局,推動(dòng)高質(zhì)量發(fā)展,提出了新發(fā)展階段我國(guó)經(jīng)濟(jì)高質(zhì)量發(fā)展要堅(jiān)持的主線、重大戰(zhàn)略目標(biāo)、工作總基調(diào)和方法論等,深刻體現(xiàn)了這一思想的重要實(shí)踐價(jià)值。

  • XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    三、2024年工作計(jì)劃一是完善基層公共文化服務(wù)管理標(biāo)準(zhǔn)化模式,持續(xù)在公共文化服務(wù)精準(zhǔn)化上探索創(chuàng)新,圍繞群眾需求,不斷調(diào)整公共文化服務(wù)內(nèi)容和形式,提升群眾滿意度。推進(jìn)鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開展活動(dòng)的上傳力度,確保年度目標(biāo)任務(wù)按時(shí)保質(zhì)保量完成。服務(wù)“雙減”政策,持續(xù)做好校外培訓(xùn)機(jī)構(gòu)審批工作,結(jié)合我區(qū)工作實(shí)際和文旅資源優(yōu)勢(shì),進(jìn)一步豐富我市義務(wù)教育階段學(xué)生“雙減”后的課外文化生活,推動(dòng)“雙減”政策走深走實(shí)。二是結(jié)合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進(jìn)全域旅游示范區(qū)創(chuàng)建,嚴(yán)格按照《國(guó)家全域旅游示范區(qū)驗(yàn)收標(biāo)準(zhǔn)》要求,極推動(dòng)旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設(shè)施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。

今日更新Word
  • 精選高中生期末評(píng)語

    精選高中生期末評(píng)語

    1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動(dòng)課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績(jī)只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個(gè)人都應(yīng)該把成績(jī)當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛說話 ,但勤奮好學(xué),誠(chéng)實(shí)可愛;你做事踏實(shí)、認(rèn)真、為 人忠厚 ,是一個(gè)品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動(dòng),能按時(shí)完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績(jī)都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計(jì)劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。

  • ××縣招商局2024年上半年工作總結(jié)

    ××縣招商局2024年上半年工作總結(jié)

    二是全力推進(jìn)在談項(xiàng)目落地。認(rèn)真落實(shí)“首席服務(wù)官”責(zé)任制,切實(shí)做好上海中道易新材料有機(jī)硅復(fù)配硅油項(xiàng)目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項(xiàng)目、天勤生物生物實(shí)驗(yàn)基地項(xiàng)目、愷德集團(tuán)文旅康養(yǎng)產(chǎn)業(yè)項(xiàng)目、三一重能風(fēng)力發(fā)電項(xiàng)目、中國(guó)供銷集團(tuán)冷鏈物流項(xiàng)目跟蹤對(duì)接,協(xié)調(diào)解決項(xiàng)目落戶過程中存在的困難和問題,力爭(zhēng)早日實(shí)現(xiàn)成果轉(zhuǎn)化。三是強(qiáng)化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調(diào)度及業(yè)務(wù)指導(dǎo),貫徹落實(shí)項(xiàng)目建設(shè)“6421”時(shí)限及“每月通報(bào)、季度排名、半年分析、年終獎(jiǎng)勵(lì)”相關(guān)要求,通過“比實(shí)績(jī)、曬單子、亮數(shù)據(jù)、拼項(xiàng)目”,進(jìn)一步營(yíng)造“比學(xué)趕超”濃厚氛圍,掀起招商引資和項(xiàng)目建設(shè)新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務(wù)。

  • “四零”承諾服務(wù)創(chuàng)建工作總結(jié)

    “四零”承諾服務(wù)創(chuàng)建工作總結(jié)

    (二)堅(jiān)持問題導(dǎo)向,持續(xù)改進(jìn)工作。要繼續(xù)在提高工作效率和服務(wù)質(zhì)量上下功夫,積極學(xué)習(xí)借鑒其他部門及xx關(guān)于“四零”承諾服務(wù)創(chuàng)建工作的先進(jìn)經(jīng)驗(yàn),同時(shí)主動(dòng)查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點(diǎn)問題。要進(jìn)一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡(jiǎn)審批程序,縮短辦事路徑,壓縮辦理時(shí)限,深化政務(wù)公開,努力為企業(yè)當(dāng)好“保姆”,為群眾提供便利,不斷適應(yīng)新時(shí)代人民群眾對(duì)政務(wù)服務(wù)的新需求。(三)深化內(nèi)外宣傳,樹立良好形象。要深入挖掘并及時(shí)總結(jié)作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作中形成的典型經(jīng)驗(yàn)做法,進(jìn)一步強(qiáng)化內(nèi)部宣傳與工作交流,推動(dòng)全市創(chuàng)建工作質(zhì)效整體提升。要面向社會(huì)和公眾莊嚴(yán)承諾并積極踐諾,主動(dòng)接受監(jiān)督,同時(shí)要依托電臺(tái)、電視臺(tái)、報(bào)紙及微信、微博等各類媒體大力宣傳xx隊(duì)伍作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作成果,不斷擴(kuò)大社會(huì)知情面和群眾知曉率。

  • “改作風(fēng)、提效能”專項(xiàng)行動(dòng)工作總結(jié)

    “改作風(fēng)、提效能”專項(xiàng)行動(dòng)工作總結(jié)

    (五)服務(wù)群眾提效能方面。一是政府采購(gòu)服務(wù)提檔升級(jí)。建成“全區(qū)一張網(wǎng)”,各類采購(gòu)主體所有業(yè)務(wù)實(shí)現(xiàn)“一網(wǎng)通辦,提升辦事效率;全面實(shí)現(xiàn)遠(yuǎn)程開標(biāo)和不見面開標(biāo),降低供應(yīng)商成本;要求400萬元以上工程采購(gòu)項(xiàng)目預(yù)留采購(gòu)份額提高至采購(gòu)比例的40%以上,支持中小企業(yè)發(fā)展。2022年,我區(qū)政府采購(gòu)榮獲”中國(guó)政府采購(gòu)獎(jiǎng)“,并以全國(guó)第一的成績(jī)獲得數(shù)字政府采購(gòu)耕耘獎(jiǎng)、新聞宣傳獎(jiǎng),以各省中第一的成績(jī)獲得年度創(chuàng)新獎(jiǎng)。二是財(cái)政電子票據(jù)便民利民。全區(qū)財(cái)政電子票據(jù)開具量突破1億張,涉及資金810.87億元。特別是在醫(yī)療領(lǐng)域,全區(qū)241家二級(jí)以上公立醫(yī)療機(jī)構(gòu)均已全部上線醫(yī)療收費(fèi)電子票據(jù),大大解決了群眾看病排隊(duì)等待時(shí)間長(zhǎng)、繳費(fèi)取票不方便的問題,讓患者”省心、省時(shí)、省力“。

  • “大學(xué)習(xí)、大討論、大調(diào)研”活動(dòng)情況總結(jié)報(bào)告

    “大學(xué)習(xí)、大討論、大調(diào)研”活動(dòng)情況總結(jié)報(bào)告

    一、活動(dòng)開展情況及成效按照省委、市委對(duì)“大學(xué)習(xí)、大討論、大調(diào)研”活動(dòng)的部署要求,縣委立即行動(dòng),于8月20日組織召開常委會(huì)會(huì)議,專題傳達(dá)學(xué)習(xí)省委X在讀書班上的講話精神。5月2日,縣委召開“大學(xué)習(xí)、大討論、大調(diào)研”活動(dòng)推進(jìn)會(huì),及時(shí)對(duì)活動(dòng)開展的相關(guān)要求、任務(wù)進(jìn)行再安排再部署,會(huì)后制定并下發(fā)了活動(dòng)實(shí)施方案、重點(diǎn)課題調(diào)研方案、宣傳報(bào)道方案等系列文件,有效指導(dǎo)活動(dòng)開展。5月17日、9月1日,縣委再次召開常委會(huì)會(huì)議,專題聽取“大學(xué)習(xí)、大討論、大調(diào)研”活動(dòng)開展情況匯報(bào),研究部署下階段工作。9月13日,召開全縣“大學(xué)習(xí)大討論大調(diào)研”活動(dòng)工作推進(jìn)座談會(huì),深入貫徹全省、全市“大學(xué)習(xí)大討論大調(diào)研”活動(dòng)工作推進(jìn)座談會(huì)精神,總結(jié)交流活動(dòng)經(jīng)驗(yàn),對(duì)下一階段活動(dòng)開展進(jìn)行安排部署?!按髮W(xué)習(xí)、大討論、大調(diào)研”活動(dòng)的有序開展,為砥礪前行、底部崛起的X注入了強(qiáng)大的精神動(dòng)力。

  • 2024年度工作計(jì)劃匯編(18篇)

    2024年度工作計(jì)劃匯編(18篇)

    1.市政基礎(chǔ)設(shè)施項(xiàng)目5項(xiàng),總建設(shè)里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進(jìn)場(chǎng),項(xiàng)目部基本建成,正在辦理臨時(shí)用地、用電及用水等相關(guān)工作;中鐵佰和佰樂(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學(xué)院配套道路項(xiàng)目在黃麓鎮(zhèn)完成圍墻建設(shè)后即可進(jìn)場(chǎng)施工。2.公益性建設(shè)項(xiàng)目6項(xiàng),總建筑面積15.62萬㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀(jì)新都小學(xué)擴(kuò)建工程已完成施工、監(jiān)理招標(biāo)掛網(wǎng),2月上旬完成全部招標(biāo)工作;合肥職業(yè)技術(shù)學(xué)院大維修三期已完成招標(biāo)工作,近期簽訂施工合同后組織進(jìn)場(chǎng)施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標(biāo)工作;半湯療養(yǎng)院智能化工程因投訴暫時(shí)中止;巢湖市中醫(yī)院(中西醫(yī)結(jié)合醫(yī)院)新建工程正在按照既定計(jì)劃推進(jìn),預(yù)計(jì)4月中下旬掛網(wǎng)招標(biāo)。