本節(jié)課選自《普通高中課程標準數學教科書-必修一》(人 教A版)第五章《三角函數》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數學抽象:角的概念;2.邏輯推理:象限角的表示;3.數學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數學思想方法;
本節(jié)主要內容是三角函數的誘導公式中的公式二至公式六,其推導過程中涉及到對稱變換,充分體現對稱變換思想在數學中的應用,在練習中加以應用,讓學生進一步體會 的任意性;綜合六組誘導公式總結出記憶誘導公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數學思想的探究過程,培養(yǎng)學生用聯系、變化的辯證唯物主義觀點去分析問題的能力。誘導公式在三角函數化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應用。課程目標1.借助單位圓,推導出正弦、余弦第二、三、四、五、六組的誘導公式,能正確運用誘導公式將任意角的三角函數化為銳角的三角函數,并解決有關三角函數求值、化簡和恒等式證明問題2.通過公式的應用,了解未知到已知、復雜到簡單的轉化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.5.1節(jié)《函數零點與方程的解》,由于學生已經學過一元二次方程與二次函數的關系,本節(jié)課的內容就是在此基礎上的推廣。從而建立一般的函數的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。1、了解函數(結合二次函數)零點的概念;2、理 解函數零點與方程的根以及函數圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數學數形結合及函數思想; a.數學抽象:函數零點的概念;b.邏輯推理:零點判定定理;c.數學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數學建模:運用函數的觀點方程的根;
本章通過學習用二分法求方程近似解的的方法,使學生體會函數與方程之間的關系,通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用,進一步認識到函數是描述客觀世界變化規(guī)律的基本數學模型,能初步運用函數思想解決一些生活中的簡單問題。1.了解函數的零點、方程的根與圖象交點三者之間的聯系.2.會借助零點存在性定理判斷函數的零點所在的大致區(qū)間.3.能借助函數單調性及圖象判斷零點個數.數學學科素養(yǎng)1.數學抽象:函數零點的概念;2.邏輯推理:借助圖像判斷零點個數;3.數學運算:求函數零點或零點所在區(qū)間;4.數學建模:通過由抽象到具體,由具體到一般的思想總結函數零點概念.重點:零點的概念,及零點與方程根的聯系;難點:零點的概念的形成.
設計意圖這一組習題的設計,讓每位學生都參與,通過學生的主動參與,讓每一位學生有“用武之地”,深刻體會本節(jié)課的重要內容和思想方法,體驗學習數學的樂趣,增強學習數學的愿望與信心。4.回顧反思,拓展延伸(教師活動)引導學生進行課堂小結,給出下列提綱,并就學生回答進行點評。(1)通過本節(jié)課的學習,你學會了哪些判斷直線與圓位置關系的方法?(2)本節(jié)課你還有哪些問題?(學生活動)學生發(fā)言,互相補充。(教師活動)布置作業(yè)(1)書面作業(yè):P70練習8.4.41、2題(2)實踐調查:尋找圓與直線的關系在生活中的應用。設計意圖通過讓學生課本上的作業(yè)設置,基于本節(jié)課內容和學生的實際,對課后的書面作業(yè)分為三個層次,分別安排了基礎鞏固題、理解題和拓展探究題。使學生完成基本學習任務的同時,在知識拓展時起激學生探究的熱情,讓每一個不同層次的學生都可以獲得成功的喜悅。
1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關系?你能用圓柱、圓錐、圓臺的結構特征來解釋這種關系嗎?3.練習一圓柱的一個底面積是S,側面展開圖是一個正方體,那么這個圓柱的側面積是( )A 4πS B 2πS C πS D 4.練習二:如圖所示,在邊長為4的正三角形ABC中,E,F分別是AB,AC的中點,D為BC的中點,H,G分別是BD,CD的中點,若將正三角形ABC繞AD旋轉180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關系可以通過實驗得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
等式性質與不等式性質是高中數學的主要內容之一,在高中數學中占有重要地位,它是刻畫現實世界中量與量之間關系的有效數學模型,在現實生活中有著廣泛的應,有著重要的實際意義.同時等式性質與不等式性質也為學生以后順利學習基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質與不等式性質以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數的大?。?3. 通過教學培養(yǎng)學生合作交流的意識和大膽猜測、樂于探究的良好思維品質。數學學科素養(yǎng)1.數學抽象:不等式的基本性質;2.邏輯推理:不等式的證明;3.數學運算:比較多項式的大小及重要不等式的應用;4.數據分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉化為加法,將除法轉化為乘法);5.數學建模:運用類比的思想有等式的基本性質猜測不等式的基本性質。
知識探究(一):普查與抽查像人口普查這樣,對每一個調查調查對象都進行調查的方法,稱為全面調查(又稱普查)。 在一個調查中,我們把調查對象的全體稱為總體,組成總體的每一個調查對象稱為個體。為了強調調查目的,也可以把調查對象的某些指標的全體作為總體,每一個調查對象的相應指標作為個體。問題二:除了普查,還有其他的調查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調查,根據抽取的居民情況來推斷總體的人口變動情況。像這樣,根據一定目的,從總體中抽取一部分個體進行調查,并以此為依據對總體的情況作出估計和判斷的方法,稱為抽樣調查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數稱為樣本量。
本節(jié)課是正弦函數、余弦函數圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點得出正弦函數、余弦函數的性質. 課程目標1.了解周期函數與最小正周期的意義;2.了解三角函數的周期性和奇偶性;3.會利用周期性定義和誘導公式求簡單三角函數的周期;4.借助圖象直觀理解正、余弦函數在[0,2π]上的性質(單調性、最值、圖象與x軸的交點等);5.能利用性質解決一些簡單問題. 數學學科素養(yǎng)1.數學抽象:理解周期函數、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數的單調區(qū)間;3.數學運算:利用性質求周期、比較大小、最值、值域及判斷奇偶性.4.數學建模:讓學生借助數形結合的思想,通過圖像探究正、余弦函數的性質.重點:通過正弦曲線、余弦曲線這兩種曲線探究正弦函數、余弦函數的性質; 難點:應用正、余弦函數的性質來求含有cosx,sinx的函數的單調性、最值、值域及對稱性.
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.4.2節(jié)《對數函數的圖像和性質》 是高中數學在指數函數之后的重要初等函數之一。對數函數與指數函數聯系密切,無論是研究的思想方法方法還是圖像及性質,都有其共通之處。相較于指數函數,對數函數的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數學提供了更多角度的分析方法。培養(yǎng)和發(fā)展學生邏輯推理、數學直觀、數學抽象、和數學建模的核心素養(yǎng)。1、掌握對數函數的圖像和性質;能利用對數函數的圖像與性質來解決簡單問題;2、經過探究對數函數的圖像和性質,對數函數與指數函數圖像之間的聯系,對數函數內部的的聯系。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數學交流能力;滲透類比等基本數學思想方法。
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內,∴BC⊥平面PAC又PC在平面PAC內,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認為墻面垂直于地面,否則他就認為墻面不垂直于地面,這種方法說明了什么道理?
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關系求參數范圍)(1)化簡p、q兩命題,(2)根據p與q的關系(充分、必要、充要條件)轉化為集合間的關系,(3)利用集合間的關系建立不等關系,(4)求解參數范圍.跟蹤訓練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結讓學生總結本節(jié)課所學主要知識及解題技巧
本課是高中數學第一章第4節(jié),充要條件是中學數學中最重要的數學概念之一, 它主要討論了命題的條件與結論之間的邏輯關系,目的是為今后的數學學習特別是數學推理的學習打下基礎。從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們去解決具體問題則更為困難,因此”充要條件”的教學成為中學數學的難點之一,而必要條件的定義又是本節(jié)內容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學習,使學生明白對條件的判定應該歸結為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學生思維能力的嚴密性品質.
(4)“不論m取何實數,方程x2+2x-m=0都有實數根”是全稱量詞命題,其否定為“存在實數m0,使得方程x2+2x-m0=0沒有實數根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應結論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結論.(2)對于省略量詞的命題,應先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據規(guī)則來寫出命題的否定.跟蹤訓練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.
新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。
問題導入:問題一:試驗1:分別拋擲兩枚質地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因為兩枚硬幣分別拋擲,第一枚硬幣的拋擲結果與第二枚硬幣的拋擲結果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗1中的P(A),P(B),P(AB),你有什么發(fā)現?在該試驗中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗2:一個袋子中裝有標號分別是1,2,3,4的4個球,除標號外沒有其他差異。
客觀世界中的各種各樣的運動變化現象均可表現為變量間的對應關系,這種關系常??捎煤瘮的P蛠砻枋?,并且通過研究函數模型就可以把我相應的運動變化規(guī)律.課程目標1、能夠找出簡單實際問題中的函數關系式,初步體會應用一次函數、二次函數、冪函數、分段函數模型解決實際問題; 2、感受運用函數概念建立模型的過程和方法,體會一次函數、二次函數、冪函數、分段函數模型在數學和其他學科中的重要性. 數學學科素養(yǎng)1.數學抽象:總結函數模型; 2.邏輯推理:找出簡單實際問題中的函數關系式,根據題干信息寫出分段函數; 3.數學運算:結合函數圖象或其單調性來求最值. ; 4.數據分析:二次函數通過對稱軸和定義域區(qū)間求最優(yōu)問題; 5.數學建模:在具體問題情境中,運用數形結合思想,將自然語言用數學表達式表示出來。 重點:運用一次函數、二次函數、冪函數、分段函數模型的處理實際問題;難點:運用函數思想理解和處理現實生活和社會中的簡單問題.
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.4.1節(jié)《對數函數的概念》。對數函數是高中數學在指數函數之后的重要初等函數之一。對數函數與指數函數聯系密切,無論是研究的思想方法方法還是圖像及性質,都有其共通之處。相較于指數函數,對數函數的圖象亦有其獨特的美感。學習中讓學生體會在類比推理,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數學提供了更多角度的分析方法。培養(yǎng)學生邏輯推理、數學直觀、數學抽象、和數學建模的核心素養(yǎng)。1、理解對數函數的定義,會求對數函數的定義域;2、了解對數函數與指數函數之間的聯系,培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數學交流能力;滲透類比等基本數學思想方法。3、在學習對數函數過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數學應用的意識,感受數學、理解數學、探索數學,提高學習數學的興趣。
對數函數與指數函數是相通的,本節(jié)在已經學習指數函數的基礎上通過實例總結歸納對數函數的概念,通過函數的形式與特征解決一些與對數函數有關的問題.課程目標1、通過實際問題了解對數函數的實際背景;2、掌握對數函數的概念,并會判斷一些函數是否是對數函數. 數學學科素養(yǎng)1.數學抽象:對數函數的概念;2.邏輯推理:用待定系數法求函數解析式及解析值;3.數學運算:利用對數函數的概念求參數;4.數學建模:通過由抽象到具體,由具體到一般的思想總結對數函數概念.重點:理解對數函數的概念和意義;難點:理解對數函數的概念.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入我們已經研究了死亡生物體內碳14的含量y隨死亡時間x的變化而衰減的規(guī)律.反過來,已知死亡生物體內碳14的含量,如何得知死亡了多長時間呢?進一步地,死亡時間t是碳14的含量y的函數嗎?
由于三角函數是刻畫周期變化現象的數學模型,這也是三角函數不同于其他類型函數的最重要的地方,而且對于周期函數,我們只要認識清楚它在一個周期的區(qū)間上的性質,那么它的性質也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數的定義、三角函數值之間的內在聯系性等來作圖,從畫出的圖形中觀察得出五個關鍵點,得到“五點法”畫正弦函數、余弦函數的簡圖.課程目標1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯系. 數學學科素養(yǎng)1.數學抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯系; 3.直觀想象:正弦函數余弦函數的圖像; 4.數學運算:五點作圖; 5.數學建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數形結合思想方法的應用.