可以直接进入网站的正能量视频,国产精品第2021在线
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.5.1節(jié)《函數(shù)零點與方程的解》,由于學(xué)生已經(jīng)學(xué)過一元二次方程與二次函數(shù)的關(guān)系,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的推廣。從而建立一般的函數(shù)的零點概念,進一步理解零點判定定理及其應(yīng)用。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、了解函數(shù)(結(jié)合二次函數(shù))零點的概念;2、理 解函數(shù)零點與方程的根以及函數(shù)圖象與x軸交點的關(guān)系,掌握零點存在性定理的運用;3、在認識函數(shù)零點的過程中,使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)數(shù)形結(jié)合及函數(shù)思想; a.數(shù)學(xué)抽象:函數(shù)零點的概念;b.邏輯推理:零點判定定理;c.數(shù)學(xué)運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數(shù)學(xué)建模:運用函數(shù)的觀點方程的根;
函數(shù)在高中數(shù)學(xué)中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個實例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標(biāo)1.理解函數(shù)的定義、函數(shù)的定義域、值域及對應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學(xué)會求函數(shù)的定義域與函數(shù)值。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:通過教材中四個實例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學(xué)運算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運用分離常數(shù)法和換元法求值域;5.數(shù)學(xué)建模:通過從實際問題中抽象概括出函數(shù)概念的活動,培養(yǎng)學(xué)生從“特殊到一般”的分析問題的能力,提高學(xué)生的抽象概括能力。重點:函數(shù)的概念,函數(shù)的三要素。難點:函數(shù)概念及符號y=f(x)的理解。
由于三角函數(shù)是刻畫周期變化現(xiàn)象的數(shù)學(xué)模型,這也是三角函數(shù)不同于其他類型函數(shù)的最重要的地方,而且對于周期函數(shù),我們只要認識清楚它在一個周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來作圖,從畫出的圖形中觀察得出五個關(guān)鍵點,得到“五點法”畫正弦函數(shù)、余弦函數(shù)的簡圖.課程目標(biāo)1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯(lián)系. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學(xué)運算:五點作圖; 5.數(shù)學(xué)建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數(shù)形結(jié)合思想方法的應(yīng)用.
本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點得出正弦函數(shù)、余弦函數(shù)的性質(zhì). 課程目標(biāo)1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會利用周期性定義和誘導(dǎo)公式求簡單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點等);5.能利用性質(zhì)解決一些簡單問題. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正、余弦函數(shù)的性質(zhì).重點:通過正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質(zhì); 難點:應(yīng)用正、余弦函數(shù)的性質(zhì)來求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對稱性.
本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質(zhì). 課程目標(biāo)1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正切函數(shù)的性質(zhì). 重點:能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用; 難點:掌握利用單位圓中正切函數(shù)定義得到其圖象.
本章通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。
課程目標(biāo)
1.了解函數(shù)的零點、方程的根與圖象交點三者之間的聯(lián)系.
2.會借助零點存在性定理判斷函數(shù)的零點所在的大致區(qū)間.
3.能借助函數(shù)單調(diào)性及圖象判斷零點個數(shù).
數(shù)學(xué)學(xué)科素養(yǎng)
1.數(shù)學(xué)抽象:函數(shù)零點的概念;
2.邏輯推理:借助圖像判斷零點個數(shù);
3.數(shù)學(xué)運算:求函數(shù)零點或零點所在區(qū)間;
4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)函數(shù)零點概念.
重點:零點的概念,及零點與方程根的聯(lián)系;
難點:零點的概念的形成.
教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。
教學(xué)工具:多媒體。
一、 情景導(dǎo)入
①方程的解為 ,函數(shù)的圖象與x軸有 個交點,坐標(biāo)為 .
②方程的解為,函數(shù)的圖象與x軸有 個交點,坐標(biāo)為 .
③ 方程的解為,函數(shù)的圖象與x軸有 個交點,坐標(biāo)為 .
根據(jù)以上結(jié)論,可以得到:
一元二次方程的根就是相應(yīng)二次函數(shù)的圖象與x軸交點的 .
你能將結(jié)論進一步推廣到嗎?
要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進一步觀察.研探.
二、預(yù)習(xí)課本,引入新課
閱讀課本142-143頁,思考并完成以下問題
1. 函數(shù)零點的定義是什么?
2. 函數(shù)零點存在性定理要具備哪兩個條件?
3.方程的根、函數(shù)的圖象與x軸的交點、函數(shù)的零點三者之間的聯(lián)系是什么?
要求:學(xué)生獨立完成,以小組為單位,組內(nèi)可商量,最終選出代表回答問題。
三、新知探究
1.函數(shù)的零點
對于函數(shù)y=f(x),把使f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點.
[點睛] 函數(shù)的零點不是一個點,而是一個實數(shù),當(dāng)自變量取該值時,其函數(shù)值等于零.
2.方程、函數(shù)、圖象之間的關(guān)系
方程f(x)=0有實根?函數(shù)y=f(x)的圖象與x軸有交點?函數(shù)y=f(x)有零點.
3.函數(shù)零點的存在性定理
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0.那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根.
[點睛] 定理要求具備兩條:①函數(shù)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線;②f(a)f(b)<0.
四、典例分析、舉一反三
題型一 求函數(shù)的零點
例1 判斷下列函數(shù)是否存在零點,如果存在,請求出.
(1)f (x)=;(2)f (x)=x2+2x+4;
(3)f (x)=2x-3;(4) f (x)=1-log3x.
【答案】(1)-3(2)不存在(3)log23(4)3.
【解析】 (1)令=0,解得x=-3,所以函數(shù)f(x)=的零點是-3.
(2)令x2+2x+4=0,由于Δ=22-414=-12<0,
所以方程x2+2x+4=0無實數(shù)根,
所以函數(shù)f(x)=x2+2x+4不存在零點.
(3)令2x-3=0,解得x=log23.
所以函數(shù)f(x)=2x-3的零點是log23.
(4)令1-log3x=0,解得x=3,
所以函數(shù)f(x)=1-log3x的零點是3.
解題技巧:(函數(shù)零點的求法)
求函數(shù)的零點通常有兩種方法:一是代數(shù)法,令f(x)=0,通過求方程f(x)=0的根求得函數(shù)的零點;二是幾何法,畫出函數(shù)y=f(x)的圖象,圖象與x軸交點的橫坐標(biāo)即為函數(shù)的零點.
跟蹤訓(xùn)練一
1.已知函數(shù)f(x)=則函數(shù)f(x)的零點為( )
A.,0 B.-2,0
C. D.0
【答案】D
【解析】當(dāng)x≤1時,令2x-1=0,得x=0.當(dāng)x>1時,令1+log2x=0,得x=,此時無解.綜上所述,函數(shù)零點為0.
題型二 判斷函數(shù)零點所在區(qū)間
例2函數(shù)f(x)=ln x-的零點所在的大致區(qū)間是
A.(1,2) B.(2,3)
C.(3,4) D.(e,+∞)
【答案】B
【解析】 ∵f(1)=-2<0,f(2)=ln 2-1<0,∴在(1,2)內(nèi)f(x)無零點,A錯;
又f(3)=ln 3->0,∴f(2)f(3)<0,∴f(x)在(2,3)內(nèi)有零點.
解題技巧:(判斷函數(shù)零點所在區(qū)間的3個步驟)
(1)代入:將區(qū)間端點值代入函數(shù)求出函數(shù)的值.
(2)判斷:把所得的函數(shù)值相乘,并進行符號判斷.
(3)結(jié)論:若符號為正且函數(shù)在該區(qū)間內(nèi)是單調(diào)函數(shù),則在該區(qū)間內(nèi)無零點,若符號為負且函數(shù)
連續(xù),則在該區(qū)間內(nèi)至少有一個零點.
跟蹤訓(xùn)練二
1.若函數(shù)f(x)=x+(a∈R)在區(qū)間(1,2)上有零點,則a的值可能是( )
A.-2 B.0 C.1 D.3
【答案】A
【解析】f(x)=x+(a∈R)的圖象在(1,2)上是連續(xù)不斷的,逐個選項代入驗證,當(dāng)a=-2時,f(1)=1-2=-1<0,f(2)=2-1=1>0.故f(x)在區(qū)間(1,2)上有零點,同理,其他選項不符合,選A.
題型三 判斷函數(shù)零點的個數(shù)
例3判斷函數(shù)f(x)=ln x+x2-3的零點的個數(shù).
【答案】有一個零點
【解析】[法一 圖象法]
函數(shù)對應(yīng)的方程為lnx+x2-3=0,所以原函數(shù)零點的個數(shù)即為
函數(shù)y=ln x與y=3-x2的圖象交點個數(shù).
在同一坐標(biāo)系下,作出兩函數(shù)的圖象(如圖).
由圖象知,函數(shù)y=3-x2與y=ln x的圖象只有一個交點,從而ln x+x2-3=0有一個根,
即函數(shù)y=ln x+x2-3有一個零點.
[法二 判定定理法]
由于f(1)=ln 1+12-3=-2<0,
f(2)=ln 2+22-3=ln 2+1>0,
∴f(1)f(2)<0,又f(x)=ln x+x2-3的圖象在(1,2)上是不間斷的,所以f(x)在(1,2)上必有零點,
又f(x)在(0,+∞)上是遞增的,所以零點只有一個.
解題技巧:(判斷函數(shù)存在零點的3種方法)
(1)方程法:若方程f(x)=0的解可求或能判斷解的個數(shù),可通過方程的解來判斷函數(shù)是否存在零點或判斷零點的個數(shù).
预览结束,下载后可阅读高清完整版文档
立即下载轉(zhuǎn)載請注明出處!本文地址:
http://m.17025calibrations.com/worddetails_96720519.html1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應(yīng)該把成績當(dāng)作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學(xué),誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強的毅力。
一是要把好正確導(dǎo)向。嚴格落實主體責(zé)任,逐條逐項細化任務(wù),層層傳導(dǎo)壓力。要抓實思想引領(lǐng),把理論學(xué)習(xí)貫穿始終,全身心投入主題教育當(dāng)中;把理論學(xué)習(xí)、調(diào)查研究、推動發(fā)展、檢視整改等有機融合、一體推進;堅持學(xué)思用貫通、知信行統(tǒng)一,努力在以學(xué)鑄魂、以學(xué)增智、以學(xué)正風(fēng)、以學(xué)促干方面取得實實在在的成效。更加深刻領(lǐng)會到******主義思想的科學(xué)體系、核心要義、實踐要求,進一步堅定了理想信念,錘煉了政治品格,增強了工作本領(lǐng),要自覺運用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質(zhì)量發(fā)展作出貢獻。二是要加強應(yīng)急處事能力。認真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強分析預(yù)警和應(yīng)對處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導(dǎo)作用。要堅決唱響主旋律,為“打造陜甘片區(qū)高質(zhì)量發(fā)展標(biāo)桿礦井”、建設(shè)“七個一流”能源集團和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強輿情的搜集及應(yīng)對。加強職工群眾熱點問題的輿論引導(dǎo),做好輿情的收集、分析和研判,把握時、度、效,重視網(wǎng)上和網(wǎng)下輿情應(yīng)對。
二是深耕意識形態(tài)。加強意識形態(tài)、網(wǎng)絡(luò)輿論陣地建設(shè)和管理,把握重大時間節(jié)點,科學(xué)分析研判意識形態(tài)領(lǐng)域情況,旗幟鮮明反對和抵制各種錯誤觀點,有效防范處置風(fēng)險隱患。積極響應(yīng)和高效落實上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設(shè),鍛造堅強有力的基層黨組織。一是提高基層黨組織建設(shè)力量。壓實黨建責(zé)任,從政治高度檢視分析黨建工作短板弱項,有針對性提出改進工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進基層黨建,打造堅強戰(zhàn)斗堡壘。創(chuàng)新實施黨建工作模式,繼續(xù)打造黨建品牌,抓實“五強五化”黨組織創(chuàng)建,廣泛開展黨員教育學(xué)習(xí)活動,以實際行動推動黨建工作和經(jīng)營發(fā)展目標(biāo)同向、部署同步、工作同力。三是加強高素質(zhì)專業(yè)化黨員隊伍管理。配齊配強支部黨務(wù)工作者,把黨務(wù)工作崗位作為培養(yǎng)鍛煉干部的重要平臺。
二要專注于解決問題。根據(jù)市委促進經(jīng)濟轉(zhuǎn)型的總要求,聚焦“四個經(jīng)濟”和“雙中心”的建設(shè),深入了解基層科技工作、學(xué)術(shù)交流、組織建設(shè)等方面的實際情況,全面了解群眾的真實需求,解決相關(guān)問題,并針對科技工作中存在的問題,采取實際措施,推動問題的實際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關(guān)鍵工具和展示平臺。目前,“民聲熱線”已回應(yīng)了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實質(zhì)性的變化和效果。接下來,我局將繼續(xù)深入學(xué)習(xí)主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗和方法,以更高的要求、更嚴格的紀(jì)律、更實際的措施和更好的成果,不斷深化主題教育的實施,展現(xiàn)新的風(fēng)貌和活力。
今年3月,市政府出臺《關(guān)于加快打造更具特色的“水運XX”的意見》,提出到2025年,“蘇南運河全線達到準(zhǔn)二級,實現(xiàn)2000噸級舶全天候暢行”。作為“水運XX”建設(shè)首戰(zhàn),諫壁閘一線閘擴容工程開工在即,但項目開工前還有許多實際問題亟需解決。結(jié)合“到一線去”專項行動,我們深入到諫壁閘一線,詳細了解工程前期進展,實地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設(shè)計方案。牢牢把握高質(zhì)量發(fā)展這個首要任務(wù),在學(xué)思踐悟中開創(chuàng)建功之業(yè),堅定扛起“走在前、挑大梁、多做貢獻”的交通責(zé)任,奮力推動交通運輸高質(zhì)量發(fā)展持續(xù)走在前列。以學(xué)促干建新功,關(guān)鍵在推動高質(zhì)量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強調(diào)立足新發(fā)展階段、貫徹新發(fā)展理念、構(gòu)建新發(fā)展格局,推動高質(zhì)量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟高質(zhì)量發(fā)展要堅持的主線、重大戰(zhàn)略目標(biāo)、工作總基調(diào)和方法論等,深刻體現(xiàn)了這一思想的重要實踐價值。
三、2024年工作計劃一是完善基層公共文化服務(wù)管理標(biāo)準(zhǔn)化模式,持續(xù)在公共文化服務(wù)精準(zhǔn)化上探索創(chuàng)新,圍繞群眾需求,不斷調(diào)整公共文化服務(wù)內(nèi)容和形式,提升群眾滿意度。推進鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標(biāo)任務(wù)按時保質(zhì)保量完成。服務(wù)“雙減”政策,持續(xù)做好校外培訓(xùn)機構(gòu)審批工作,結(jié)合我區(qū)工作實際和文旅資源優(yōu)勢,進一步豐富我市義務(wù)教育階段學(xué)生“雙減”后的課外文化生活,推動“雙減”政策走深走實。二是結(jié)合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進全域旅游示范區(qū)創(chuàng)建,嚴格按照《國家全域旅游示范區(qū)驗收標(biāo)準(zhǔn)》要求,極推動旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設(shè)施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。
1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應(yīng)該把成績當(dāng)作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學(xué),誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強的毅力。
二是全力推進在談項目落地。認真落實“首席服務(wù)官”責(zé)任制,切實做好上海中道易新材料有機硅復(fù)配硅油項目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項目、天勤生物生物實驗基地項目、愷德集團文旅康養(yǎng)產(chǎn)業(yè)項目、三一重能風(fēng)力發(fā)電項目、中國供銷集團冷鏈物流項目跟蹤對接,協(xié)調(diào)解決項目落戶過程中存在的困難和問題,力爭早日實現(xiàn)成果轉(zhuǎn)化。三是強化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調(diào)度及業(yè)務(wù)指導(dǎo),貫徹落實項目建設(shè)“6421”時限及“每月通報、季度排名、半年分析、年終獎勵”相關(guān)要求,通過“比實績、曬單子、亮數(shù)據(jù)、拼項目”,進一步營造“比學(xué)趕超”濃厚氛圍,掀起招商引資和項目建設(shè)新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務(wù)。
(二)堅持問題導(dǎo)向,持續(xù)改進工作。要繼續(xù)在提高工作效率和服務(wù)質(zhì)量上下功夫,積極學(xué)習(xí)借鑒其他部門及xx關(guān)于“四零”承諾服務(wù)創(chuàng)建工作的先進經(jīng)驗,同時主動查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點問題。要進一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時限,深化政務(wù)公開,努力為企業(yè)當(dāng)好“保姆”,為群眾提供便利,不斷適應(yīng)新時代人民群眾對政務(wù)服務(wù)的新需求。(三)深化內(nèi)外宣傳,樹立良好形象。要深入挖掘并及時總結(jié)作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作中形成的典型經(jīng)驗做法,進一步強化內(nèi)部宣傳與工作交流,推動全市創(chuàng)建工作質(zhì)效整體提升。要面向社會和公眾莊嚴承諾并積極踐諾,主動接受監(jiān)督,同時要依托電臺、電視臺、報紙及微信、微博等各類媒體大力宣傳xx隊伍作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作成果,不斷擴大社會知情面和群眾知曉率。
(五)服務(wù)群眾提效能方面。一是政府采購服務(wù)提檔升級。建成“全區(qū)一張網(wǎng)”,各類采購主體所有業(yè)務(wù)實現(xiàn)“一網(wǎng)通辦,提升辦事效率;全面實現(xiàn)遠程開標(biāo)和不見面開標(biāo),降低供應(yīng)商成本;要求400萬元以上工程采購項目預(yù)留采購份額提高至采購比例的40%以上,支持中小企業(yè)發(fā)展。2022年,我區(qū)政府采購榮獲”中國政府采購獎“,并以全國第一的成績獲得數(shù)字政府采購耕耘獎、新聞宣傳獎,以各省中第一的成績獲得年度創(chuàng)新獎。二是財政電子票據(jù)便民利民。全區(qū)財政電子票據(jù)開具量突破1億張,涉及資金810.87億元。特別是在醫(yī)療領(lǐng)域,全區(qū)241家二級以上公立醫(yī)療機構(gòu)均已全部上線醫(yī)療收費電子票據(jù),大大解決了群眾看病排隊等待時間長、繳費取票不方便的問題,讓患者”省心、省時、省力“。
一、活動開展情況及成效按照省委、市委對“大學(xué)習(xí)、大討論、大調(diào)研”活動的部署要求,縣委立即行動,于8月20日組織召開常委會會議,專題傳達學(xué)習(xí)省委X在讀書班上的講話精神。5月2日,縣委召開“大學(xué)習(xí)、大討論、大調(diào)研”活動推進會,及時對活動開展的相關(guān)要求、任務(wù)進行再安排再部署,會后制定并下發(fā)了活動實施方案、重點課題調(diào)研方案、宣傳報道方案等系列文件,有效指導(dǎo)活動開展。5月17日、9月1日,縣委再次召開常委會會議,專題聽取“大學(xué)習(xí)、大討論、大調(diào)研”活動開展情況匯報,研究部署下階段工作。9月13日,召開全縣“大學(xué)習(xí)大討論大調(diào)研”活動工作推進座談會,深入貫徹全省、全市“大學(xué)習(xí)大討論大調(diào)研”活動工作推進座談會精神,總結(jié)交流活動經(jīng)驗,對下一階段活動開展進行安排部署。“大學(xué)習(xí)、大討論、大調(diào)研”活動的有序開展,為砥礪前行、底部崛起的X注入了強大的精神動力。
1.市政基礎(chǔ)設(shè)施項目5項,總建設(shè)里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進場,項目部基本建成,正在辦理臨時用地、用電及用水等相關(guān)工作;中鐵佰和佰樂(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學(xué)院配套道路項目在黃麓鎮(zhèn)完成圍墻建設(shè)后即可進場施工。2.公益性建設(shè)項目6項,總建筑面積15.62萬㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀(jì)新都小學(xué)擴建工程已完成施工、監(jiān)理招標(biāo)掛網(wǎng),2月上旬完成全部招標(biāo)工作;合肥職業(yè)技術(shù)學(xué)院大維修三期已完成招標(biāo)工作,近期簽訂施工合同后組織進場施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標(biāo)工作;半湯療養(yǎng)院智能化工程因投訴暫時中止;巢湖市中醫(yī)院(中西醫(yī)結(jié)合醫(yī)院)新建工程正在按照既定計劃推進,預(yù)計4月中下旬掛網(wǎng)招標(biāo)。