提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word模板 > 教育教學(xué) > 課件教案> 人教版高中數(shù)學(xué)選修3分類加法計數(shù)原理與分步乘法計數(shù)原理(1)教學(xué)設(shè)計

久久久久久91香蕉国产,91精品国产综合久久精品

  • 收藏模板
    下載模板

您可能喜歡的文檔查看更多

  • 人教版高中數(shù)學(xué)選修3分類加法計數(shù)原理與分步乘法計數(shù)原理(2)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3分類加法計數(shù)原理與分步乘法計數(shù)原理(2)教學(xué)設(shè)計

    當(dāng)A,C顏色相同時,先染P有4種方法,再染A,C有3種方法,然后染B有2種方法,最后染D也有2種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×2=48(種)方法;當(dāng)A,C顏色不相同時,先染P有4種方法,再染A有3種方法,然后染C有2種方法,最后染B,D都有1種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×1×1=24(種)方法.綜上,共有48+24=72(種)方法.故選B.答案:B5.某藝術(shù)小組有9人,每人至少會鋼琴和小號中的一種樂器,其中7人會鋼琴,3人會小號,從中選出會鋼琴與會小號的各1人,有多少種不同的選法?解:由題意可知,在藝術(shù)小組9人中,有且僅有1人既會鋼琴又會小號(把該人記為甲),只會鋼琴的有6人,只會小號的有2人.把從中選出會鋼琴與會小號各1人的方法分為兩類.第1類,甲入選,另1人只需從其他8人中任選1人,故這類選法共8種;第2類,甲不入選,則會鋼琴的只能從6個只會鋼琴的人中選出,有6種不同的選法,會小號的也只能從只會小號的2人中選出,有2種不同的選法,所以這類選法共有6×2=12(種).因此共有8+12=20(種)不同的選法.

  • 人教版高中數(shù)學(xué)選修3分類變量與列聯(lián)表教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3分類變量與列聯(lián)表教學(xué)設(shè)計

    一、 問題導(dǎo)學(xué)前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀(jì)錄和創(chuàng)紀(jì)錄的時間等,都是數(shù)值變量,數(shù)值變量的取值為實數(shù).其大小和運(yùn)算都有實際含義.在現(xiàn)實生活中,人們經(jīng)常需要回答一定范圍內(nèi)的兩種現(xiàn)象或性質(zhì)之間是否存在關(guān)聯(lián)性或相互影響的問題.例如,就讀不同學(xué)校是否對學(xué)生的成績有影響,不同班級學(xué)生用于體育鍛煉的時間是否有差別,吸煙是否會增加患肺癌的風(fēng)險,等等,本節(jié)將要學(xué)習(xí)的獨(dú)立性檢驗方法為我們提供了解決這類問題的方案。在討論上述問題時,為了表述方便,我們經(jīng)常會使用一種特殊的隨機(jī)變量,以區(qū)別不同的現(xiàn)象或性質(zhì),這類隨機(jī)變量稱為分類變量.分類變量的取值可以用實數(shù)表示,例如,學(xué)生所在的班級可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時候,這些數(shù)值只作為編號使用,并沒有通常的大小和運(yùn)算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關(guān)聯(lián)性問題.

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.1《計數(shù)原理》教學(xué)設(shè)計

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.1《計數(shù)原理》教學(xué)設(shè)計

    授課 日期 班級16高造價 課題: §10.1 計數(shù)原理 教學(xué)目的要求: 1.掌握分類計數(shù)原理與分步計數(shù)原理的概念和區(qū)別; 2.能利用兩個原理分析和解決一些簡單的應(yīng)用問題; 3.通過對一些應(yīng)用問題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學(xué)重點(diǎn)、難點(diǎn): 兩個原理的概念與區(qū)別 授課方法: 任務(wù)驅(qū)動法 小組合作學(xué)習(xí)法 教學(xué)參考及教具(含多媒體教學(xué)設(shè)備): 《單招教學(xué)大綱》、課件 授課執(zhí)行情況及分析: 板書設(shè)計或授課提綱 §10.1 計數(shù)原理 1、加法原理 2、乘法原理 3、兩個原理的區(qū)別

  • 人教版高中數(shù)學(xué)選修3超幾何分布教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3超幾何分布教學(xué)設(shè)計

    探究新知問題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機(jī)抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機(jī)變量X的分布列.(1):采用有放回抽樣,隨機(jī)變量X服從二項分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨(dú)立,此時X服從二項分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機(jī)變量X服從超幾何分布.

  • 人教版高中數(shù)學(xué)選修3正態(tài)分布教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3正態(tài)分布教學(xué)設(shè)計

    3.某縣農(nóng)民月均收入服從N(500,202)的正態(tài)分布,則此縣農(nóng)民月均收入在500元到520元間人數(shù)的百分比約為 . 解析:因為月收入服從正態(tài)分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范圍內(nèi)的概率為0.683.由圖像的對稱性可知,此縣農(nóng)民月均收入在500到520元間人數(shù)的百分比約為34.15%.答案:34.15%4.某種零件的尺寸ξ(單位:cm)服從正態(tài)分布N(3,12),則不屬于區(qū)間[1,5]這個尺寸范圍的零件數(shù)約占總數(shù)的 . 解析:零件尺寸屬于區(qū)間[μ-2σ,μ+2σ],即零件尺寸在[1,5]內(nèi)取值的概率約為95.4%,故零件尺寸不屬于區(qū)間[1,5]內(nèi)的概率為1-95.4%=4.6%.答案:4.6%5. 設(shè)在一次數(shù)學(xué)考試中,某班學(xué)生的分?jǐn)?shù)X~N(110,202),且知試卷滿分150分,這個班的學(xué)生共54人,求這個班在這次數(shù)學(xué)考試中及格(即90分及90分以上)的人數(shù)和130分以上的人數(shù).解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人數(shù)約為9人.

分類加法計數(shù)原理與分步乘法計數(shù)原理(1)教學(xué)設(shè)計

本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第三冊》,第六章《計數(shù)原理》,本節(jié)課主要學(xué)習(xí)分類加法計數(shù)原理與分步乘法計數(shù)原理。

兩個計數(shù)原理,其核心是準(zhǔn)確理解兩個原理,弄清它們的區(qū)別。理解它關(guān)鍵就是要根據(jù)實例概括兩個計數(shù)原理。學(xué)生對計數(shù)問題已經(jīng)有一些經(jīng)驗和技巧,本節(jié)課的內(nèi)容分類計數(shù)原理和分步計數(shù)原理就是在此基礎(chǔ)上的發(fā)展。由于排列、組合及二項式定理的研究都是以兩個計數(shù)原理為基礎(chǔ),所以在本學(xué)科計數(shù)問題中有重要的地位,是本學(xué)科的核心內(nèi)容。教學(xué)的重點(diǎn)是兩個原理的理解與應(yīng)用,解決重點(diǎn)的關(guān)鍵是從單一到綜合,恰當(dāng)安排實例。

課件教案

課程目標(biāo)

學(xué)科素養(yǎng)

A.通過實例能歸納總結(jié)出分類加法計數(shù)原理與分步乘法計數(shù)原理;

B.正確理解“完成一件事情”的含義,能根據(jù)具體問題的特征,選擇“分類”或“分步”.

C.能利用兩個原理解決一些簡單的實際問題.

1.數(shù)學(xué)抽象:兩個計數(shù)原理

2.邏輯推理:準(zhǔn)確運(yùn)用兩個計數(shù)原理解決問題

3.數(shù)學(xué)運(yùn)算:運(yùn)用計數(shù)原理解決計數(shù)問題

4.數(shù)學(xué)建模:將計數(shù)問題轉(zhuǎn)化為分類和分步計數(shù)問題

重點(diǎn):分類加法計數(shù)原理、分步乘法計數(shù)原理及其簡單應(yīng)用

難點(diǎn):準(zhǔn)確應(yīng)用兩個計數(shù)原理解決問題

多媒體

教學(xué)過程

教學(xué)設(shè)計意圖

核心素養(yǎng)目標(biāo)

一、問題導(dǎo)學(xué)

計數(shù)問題是我們從小就經(jīng)常遇到的,通過列舉一個一個地數(shù)是計數(shù)的基本方法,但當(dāng)問題中的數(shù)量很大時,列舉的方法效率不高,能否設(shè)計巧妙的“數(shù)法”,以提高效率呢?下面先分析一個簡單的問題,并嘗試從中得出巧妙的計數(shù)方法.

問題1. 用一個大寫的英文字母或一個阿拉伯?dāng)?shù)字給教室里的一個座位編號,總共能編出多少種不同的號碼?

因為英文字母共有26個,阿拉伯?dāng)?shù)字共有10個,所以總共可以編出26+10=36種不同的號碼.

問題2.你能說說這個問題的特征嗎?

上述計數(shù)過程的基本環(huán)節(jié)是:

(1)確定分類標(biāo)準(zhǔn),根據(jù)問題條件分為字母號碼和數(shù)字號碼兩類;

(2)分別計算各類號碼的個數(shù);

(3)各類號碼的個數(shù)相加,得出所有號碼的個數(shù).

你能舉出一些生活中類似的例子嗎?

一般地,有如下分類加法計數(shù)原理:

完成一件事,有兩類辦法. 在第1類辦法中有m種不同的方法,在第2類方法中有n種不同的方法,則完成這件事共有:N= m+n種不同的方法.

二、典例解析

例1.在填寫高考志愿時,一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強(qiáng)項專業(yè),如表,

A大學(xué)

B大學(xué)

生物學(xué)

數(shù)學(xué)

化學(xué)

會計學(xué)

醫(yī)學(xué)

信息技術(shù)學(xué)

物理學(xué)

法學(xué)

工程學(xué)

如果這名同學(xué)只能選一個專業(yè),那么他共有多少種選擇?

分析:要完成的事情是“選一個專業(yè)” .因為這名同學(xué)在A,B兩所大學(xué)中只能選擇一所,而且只能選擇一個專業(yè),又因為這兩所大學(xué)沒有共同的強(qiáng)項專業(yè),所以符合分類加法計數(shù)原理的條件.

解:這名同學(xué)可以選擇A,B兩所大學(xué)中的一所,在A大學(xué)中有5種專業(yè)選擇

方法,在B大學(xué)中有4種專業(yè)選擇方法,因為沒有一個強(qiáng)項專業(yè)是兩所大學(xué)共有的,所以根據(jù)分類加法計數(shù)原理,這名同學(xué)可能的專業(yè)選擇種數(shù)N=5+4=9.

利用分類加法計數(shù)原理解題的一般思路

(1)分類:將完成這件事的辦法分成若干類;

(2)計數(shù):求出每一類中的方法數(shù);

(3)結(jié)論:將每一類中的方法數(shù)相加得最終結(jié)果.

問題3. 如果完成一件事有三類不同方案,在第一類方案中有 m1種不同的方法,在第二類方案中有m2種不同的方法,在第三類方案中有m3種不同的方法,那么完成這件事共有多少種不同的方法?如果完成一件事情有N類不同方案,在每一類中都有若干種不同的方法,那么應(yīng)該如何計數(shù)呢?

分類加法計數(shù)原理:完成一件事,如果有n類辦法,:第一類辦法中有m1種不同的方法,第二類辦法中有m2種不同的方法……n類辦法中有mn種不同的方法,那么完成這件事共有N=m1+m2++mn種不同的方法.

跟蹤訓(xùn)練1.在所有的兩位數(shù)中,個位數(shù)字大于十位數(shù)字的兩位數(shù)的個數(shù)是( )

A18 B36 C72 D48

解析:方法一 按十位上的數(shù)字分別是1,2,34,5,6,78分成八類,在每一類中滿足條件的兩位數(shù)分別有8個、7個、6個、5個、4個、3個、2個、1個.由分類加法計數(shù)原理知,滿足條件的兩位數(shù)共有8765432136().

方法二 按個位上的數(shù)字分別是2,3,4,5,67,8,9分成八類,在每一類中滿足條件的兩位數(shù)分別有1個、2個、3個、4個、5個、6個、7個、8個.由分類加法計數(shù)原理知,滿足條件的兩位數(shù)共有1234567836().

方法三 考慮兩位數(shù)的個位數(shù)字與十位數(shù)字的大小關(guān)系,利用對應(yīng)思想解決.所有的兩位數(shù)共有90個,其中,個位數(shù)字等于十位數(shù)字的兩位數(shù)為1122,33,99,共9個;有10,20,30,909個兩位數(shù)的個位數(shù)字與十位數(shù)字不能調(diào)換位置,則剩余的兩位數(shù)有901872().在這72個兩位數(shù)中,每一個個位數(shù)字(a)小于十位數(shù)字(b)的兩位數(shù)都有一個十位數(shù)字(a)小于個位數(shù)字(b)的兩位數(shù)與之對應(yīng),故滿足條件的兩位數(shù)的個數(shù)是72236.故選B.

答案:B

問題4. 用前6個大寫的英文字母和1~9個阿拉伯?dāng)?shù)字,以A1, A1…A9,B1,B2,的方式給教室里的一個座位編號,總共能編出多少種不同的號碼?

解:方法一:解決計數(shù)問題可以用“樹狀圖”列舉出來

方法二:由于6個英文字母中的任意一個都能與6個數(shù)字中的任意一個組成一個號碼,而且它們互不相同,因此共有69=54種不同的號碼.

問題5.你能說說這個問題的特征嗎?

上述計數(shù)過程的基本環(huán)節(jié)是:

1)由問題條件中的“和”,可確定完成編號要分兩步;

2)分別計算各步號碼的個數(shù);

3)將各步號碼的個數(shù)相乘,得出所有號碼的個數(shù).

你能舉出一些生活中類似的例子嗎?

2.設(shè)某班有男生30名,女生24名?,F(xiàn)要從中選出男、女生各一名代表班級參

加比賽,共有多少種不同的選法?

分析:選出一組參賽代表,可分兩步:第一步, 選男生;第二步,選女生.

解:第一步,30名男生中選出1,30種不同選擇;

第二步,24名女生中選出1,24種不同選擇;

根據(jù)分步計數(shù)原理,共有 3024=720種不同方法.

問題6. 如果完成一件事有三個步驟, 做第1步有m1種不同的方法,做第2步有m2種不同的方法,做第3步有m3種不同的方法,那么完成這件事共有多少種不同的方法?

Nm1m2m3

如果完成一件事需要有n個步驟,做每一步中都有若干種不同方法,那么應(yīng)當(dāng)如何計數(shù)呢?

如果完成一件事需要n個步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法,…,做第n步有mn種不同的方法,那么完成這件事的方法總數(shù)如何計算?

分步乘法計數(shù)原理一般結(jié)論:

Nm1m2mn

3.書架上第1層放有4本不同的計算機(jī)書, 2層放有3本不同的文藝書,3層放有2本不同的體育雜志.

(1)從書架上任取1本書,有多少種不同的取法?

(2)從書架的第1、2、3層各取1本書,有多少種不同取法?

(3)從書架上取2本不同學(xué)科的書,有多少種不同的取法?

解:(1)根據(jù)分類加法計數(shù)原理可得:N43+29;

2)根據(jù)分步乘法計數(shù)原理可得:N4 3224;

3)需先分類再分步.

第一類:從一、二層各取一本,有43=12種方法;

第二類:從一、三層各取一本,42=8種方法;

第三類:從二、三層各取一本,32=6種方法;

根據(jù)兩個基本原理,不同的取法總數(shù)是

N=43+42+32=26

: 從書架上取2本不同種的書,26種不同的取法.

應(yīng)用分步乘法計數(shù)原理解題的一般思路

跟蹤訓(xùn)練2. 6名同學(xué)報名參加三個智力競賽項目,在下列情況下各有多少種不同的報名方法?(不一定6名同學(xué)都參加)

(1)每人恰好參加一項,每項人數(shù)不限;

(2)每項限報一人,且每人至多參加一項;

(3)每項限報一人,但每人參加的項目不限.

解:(1)每人都可以從這三個比賽項目中選報一項,各有3種不同的報名方法.

根據(jù)分步乘法計數(shù)原理,可得不同的報名方法種數(shù)為36729.

(2)每項限報一人,且每人至多參加一項,

因此可由項目選人,第一個項目有6種選法,第二個項目有5種選法,第三個項目有4種選法.

根據(jù)分步乘法計數(shù)原理,可得不同的報名方法種數(shù)為654120.

(3)每人參加的項目不限,因此每一個項目都可以從這6人中選出1人參賽.根據(jù)分步乘法計數(shù)原理,可得不同的報名方法種數(shù)為63216.

通過導(dǎo)語,幫助學(xué)生回顧計數(shù)問題,引出學(xué)習(xí)課題。

通過具體問題,已發(fā)學(xué)生思考,通過分析、比較、歸納、形成對計數(shù)原理的認(rèn)識。發(fā)展學(xué)生數(shù)學(xué)運(yùn)算,數(shù)學(xué)抽象和數(shù)學(xué)建模的核心素養(yǎng)。

在典例分析和練習(xí)中讓學(xué)生熟悉兩個計數(shù)原理的基本步驟,并能區(qū)分它們的聯(lián)系和區(qū)別,發(fā)展學(xué)生邏輯推理,直觀想象、數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng)。

三、達(dá)標(biāo)檢測

1.某教師有相同的語文參考書3本,相同的數(shù)學(xué)參考書4本,從中取出4本贈送給4位學(xué)生,每位學(xué)生1本,則不同的贈送方法共有( )

A20 B15 C10 D4

解析:若4本中有3本語文參考書和1本數(shù)學(xué)參考書,則有4種方法,若4本中有1本語文參考書和3本數(shù)學(xué)參考書,則有4種方法,若4本中有2本語文參考書和2本數(shù)學(xué)參考書,則有6種方法,若4本都是數(shù)學(xué)參考書,則有一種方法,所以不同的贈送方法共有446115().故選B.

答案:B

2.現(xiàn)有6名同學(xué)去聽同時進(jìn)行的5個課外知識講座,每名同學(xué)可自由選擇其中的一個講座,不同的選法的種數(shù)是( )

A56 B65 C30 D11

解析:(1)第一名同學(xué)有5種選擇方法,第二名也有5種選擇方法,,依次,第六名同學(xué)有5種選擇方法,綜上,6名同學(xué)共有56種不同的選法.故選A.

3. 4張卡片的正、反面分別標(biāo)有01,23,45,67,將其中3張卡片排放在一起,可組成 個不同的三位數(shù).

解析:分三個步驟:

第一步:百位可放8-1=7個數(shù);

第二步:十位可放6個數(shù);

第三步:個位可放4個數(shù).

根據(jù)分步乘法計數(shù)原理,可以組成N=764=168個不同的三位數(shù).

答案:168

4.如圖所示的電路圖,AB共有 條不同的線路可通電.

解析:先分三類.第一類,經(jīng)過支路3種方法;第二類,經(jīng)過支路1種方法;第三類,經(jīng)過支路22=4種方法,所以總的線路條數(shù)N=3+1+4=8.

答案:8

5.如圖,一只螞蟻沿著長方體的棱,從頂點(diǎn)A爬到相對頂點(diǎn)C1,求其中經(jīng)過3條棱的路線共有多少條?

:從總體上看有三類方法,分別經(jīng)過AB,AD,AA1.從局部上看每一類又需分兩步完成.故第一類:經(jīng)過AB,m1=12=2;第二類:經(jīng)過AD,m2=12=2;第三類:經(jīng)過AA1,m3=12=2.根據(jù)分類加法計數(shù)原理,從頂點(diǎn)A到頂點(diǎn)C1經(jīng)過3條棱的路線共有N=2+2+2=6.

6.某外語組有9,每人至少會英語和日語中的一門,其中7人會英語,3人會日語,從中選出會英語和日語的各一人到邊遠(yuǎn)地區(qū)支教,有多少種不同的選法?

:由題意知,1人既會英語又會日語,6人只會英語,2人只會日語.

方法一:分兩類.

第一類:從只會英語的6人中選1人有6種選法,從會日語的3人中選1人有3種選法.此時共有63=18()選法.

第二類:全能的人中選1人有1種選法,從只會日語的2人中選1人有2種選法,此時有12=2()選法.所以由分類加法計數(shù)原理知,共有18+2=20()選法.

方法二:設(shè)既會英語又會日語的人為甲,則甲有入選和不入選兩類情形,入選后又分兩種情況:(1)教英語;(2)教日語.

第一類:甲入選.

(1)甲教英語,再從只會日語的2人中選1,由分步乘法計數(shù)原理,12=2()選法;

(2)甲教日語,再從只會英語的6人中選1,由分步乘法計數(shù)原理,16=6()選法.故甲入選的不同選法共有2+6=8().

第二類:甲不入選.

可分兩步:第一步,從只會英語的6人中選1人有6種選法;第二步,從只會日語的2人中選1人有2種選法.由分步乘法計數(shù)原理,62=12()不同的選法.綜上,共有8+12=20()不同的選法.

通過練習(xí)鞏固本節(jié)所學(xué)知識,通過學(xué)生解決問題,發(fā)展學(xué)生的數(shù)學(xué)運(yùn)算、邏輯推理、直觀想象、數(shù)學(xué)建模的核心素養(yǎng)。


  • 预览结束,下载后可阅读高清完整版文档

    立即下载
最新課件教案文檔
  • 精選高中生期末評語

    精選高中生期末評語

    1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應(yīng)該把成績當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛說話 ,但勤奮好學(xué),誠實可愛;你做事踏實、認(rèn)真、為 人忠厚 ,是一個品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。

  • 公司2024第一季度意識形態(tài)工作聯(lián)席會議總結(jié)

    公司2024第一季度意識形態(tài)工作聯(lián)席會議總結(jié)

    一是要把好正確導(dǎo)向。嚴(yán)格落實主體責(zé)任,逐條逐項細(xì)化任務(wù),層層傳導(dǎo)壓力。要抓實思想引領(lǐng),把理論學(xué)習(xí)貫穿始終,全身心投入主題教育當(dāng)中;把理論學(xué)習(xí)、調(diào)查研究、推動發(fā)展、檢視整改等有機(jī)融合、一體推進(jìn);堅持學(xué)思用貫通、知信行統(tǒng)一,努力在以學(xué)鑄魂、以學(xué)增智、以學(xué)正風(fēng)、以學(xué)促干方面取得實實在在的成效。更加深刻領(lǐng)會到******主義思想的科學(xué)體系、核心要義、實踐要求,進(jìn)一步堅定了理想信念,錘煉了政治品格,增強(qiáng)了工作本領(lǐng),要自覺運(yùn)用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質(zhì)量發(fā)展作出貢獻(xiàn)。二是要加強(qiáng)應(yīng)急處事能力。認(rèn)真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強(qiáng)分析預(yù)警和應(yīng)對處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導(dǎo)作用。要堅決唱響主旋律,為“打造陜甘片區(qū)高質(zhì)量發(fā)展標(biāo)桿礦井”、建設(shè)“七個一流”能源集團(tuán)和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強(qiáng)輿情的搜集及應(yīng)對。加強(qiáng)職工群眾熱點(diǎn)問題的輿論引導(dǎo),做好輿情的收集、分析和研判,把握時、度、效,重視網(wǎng)上和網(wǎng)下輿情應(yīng)對。

  • 關(guān)于2024年上半年工作總結(jié)和下半年工作計劃

    關(guān)于2024年上半年工作總結(jié)和下半年工作計劃

    二是深耕意識形態(tài)。加強(qiáng)意識形態(tài)、網(wǎng)絡(luò)輿論陣地建設(shè)和管理,把握重大時間節(jié)點(diǎn),科學(xué)分析研判意識形態(tài)領(lǐng)域情況,旗幟鮮明反對和抵制各種錯誤觀點(diǎn),有效防范處置風(fēng)險隱患。積極響應(yīng)和高效落實上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設(shè),鍛造堅強(qiáng)有力的基層黨組織。一是提高基層黨組織建設(shè)力量。壓實黨建責(zé)任,從政治高度檢視分析黨建工作短板弱項,有針對性提出改進(jìn)工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進(jìn)基層黨建,打造堅強(qiáng)戰(zhàn)斗堡壘。創(chuàng)新實施黨建工作模式,繼續(xù)打造黨建品牌,抓實“五強(qiáng)五化”黨組織創(chuàng)建,廣泛開展黨員教育學(xué)習(xí)活動,以實際行動推動黨建工作和經(jīng)營發(fā)展目標(biāo)同向、部署同步、工作同力。三是加強(qiáng)高素質(zhì)專業(yè)化黨員隊伍管理。配齊配強(qiáng)支部黨務(wù)工作者,把黨務(wù)工作崗位作為培養(yǎng)鍛煉干部的重要平臺。

  • XX區(qū)民政局黨支部開展主題教育工作情況總結(jié)報告

    XX區(qū)民政局黨支部開展主題教育工作情況總結(jié)報告

    二要專注于解決問題。根據(jù)市委促進(jìn)經(jīng)濟(jì)轉(zhuǎn)型的總要求,聚焦“四個經(jīng)濟(jì)”和“雙中心”的建設(shè),深入了解基層科技工作、學(xué)術(shù)交流、組織建設(shè)等方面的實際情況,全面了解群眾的真實需求,解決相關(guān)問題,并針對科技工作中存在的問題,采取實際措施,推動問題的實際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關(guān)鍵工具和展示平臺。目前,“民聲熱線”已回應(yīng)了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實質(zhì)性的變化和效果。接下來,我局將繼續(xù)深入學(xué)習(xí)主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗和方法,以更高的要求、更嚴(yán)格的紀(jì)律、更實際的措施和更好的成果,不斷深化主題教育的實施,展現(xiàn)新的風(fēng)貌和活力。

  • 交通運(yùn)輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進(jìn)會上的匯報發(fā)言

    交通運(yùn)輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進(jìn)會上的匯報發(fā)言

    今年3月,市政府出臺《關(guān)于加快打造更具特色的“水運(yùn)XX”的意見》,提出到2025年,“蘇南運(yùn)河全線達(dá)到準(zhǔn)二級,實現(xiàn)2000噸級舶全天候暢行”。作為“水運(yùn)XX”建設(shè)首戰(zhàn),諫壁閘一線閘擴(kuò)容工程開工在即,但項目開工前還有許多實際問題亟需解決。結(jié)合“到一線去”專項行動,我們深入到諫壁閘一線,詳細(xì)了解工程前期進(jìn)展,實地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設(shè)計方案。牢牢把握高質(zhì)量發(fā)展這個首要任務(wù),在學(xué)思踐悟中開創(chuàng)建功之業(yè),堅定扛起“走在前、挑大梁、多做貢獻(xiàn)”的交通責(zé)任,奮力推動交通運(yùn)輸高質(zhì)量發(fā)展持續(xù)走在前列。以學(xué)促干建新功,關(guān)鍵在推動高質(zhì)量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強(qiáng)調(diào)立足新發(fā)展階段、貫徹新發(fā)展理念、構(gòu)建新發(fā)展格局,推動高質(zhì)量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟(jì)高質(zhì)量發(fā)展要堅持的主線、重大戰(zhàn)略目標(biāo)、工作總基調(diào)和方法論等,深刻體現(xiàn)了這一思想的重要實踐價值。

  • XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    三、2024年工作計劃一是完善基層公共文化服務(wù)管理標(biāo)準(zhǔn)化模式,持續(xù)在公共文化服務(wù)精準(zhǔn)化上探索創(chuàng)新,圍繞群眾需求,不斷調(diào)整公共文化服務(wù)內(nèi)容和形式,提升群眾滿意度。推進(jìn)鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標(biāo)任務(wù)按時保質(zhì)保量完成。服務(wù)“雙減”政策,持續(xù)做好校外培訓(xùn)機(jī)構(gòu)審批工作,結(jié)合我區(qū)工作實際和文旅資源優(yōu)勢,進(jìn)一步豐富我市義務(wù)教育階段學(xué)生“雙減”后的課外文化生活,推動“雙減”政策走深走實。二是結(jié)合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進(jìn)全域旅游示范區(qū)創(chuàng)建,嚴(yán)格按照《國家全域旅游示范區(qū)驗收標(biāo)準(zhǔn)》要求,極推動旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設(shè)施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。

今日更新Word
  • 精選高中生期末評語

    精選高中生期末評語

    1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應(yīng)該把成績當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛說話 ,但勤奮好學(xué),誠實可愛;你做事踏實、認(rèn)真、為 人忠厚 ,是一個品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。

  • ××縣招商局2024年上半年工作總結(jié)

    ××縣招商局2024年上半年工作總結(jié)

    二是全力推進(jìn)在談項目落地。認(rèn)真落實“首席服務(wù)官”責(zé)任制,切實做好上海中道易新材料有機(jī)硅復(fù)配硅油項目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項目、天勤生物生物實驗基地項目、愷德集團(tuán)文旅康養(yǎng)產(chǎn)業(yè)項目、三一重能風(fēng)力發(fā)電項目、中國供銷集團(tuán)冷鏈物流項目跟蹤對接,協(xié)調(diào)解決項目落戶過程中存在的困難和問題,力爭早日實現(xiàn)成果轉(zhuǎn)化。三是強(qiáng)化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調(diào)度及業(yè)務(wù)指導(dǎo),貫徹落實項目建設(shè)“6421”時限及“每月通報、季度排名、半年分析、年終獎勵”相關(guān)要求,通過“比實績、曬單子、亮數(shù)據(jù)、拼項目”,進(jìn)一步營造“比學(xué)趕超”濃厚氛圍,掀起招商引資和項目建設(shè)新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務(wù)。

  • “四零”承諾服務(wù)創(chuàng)建工作總結(jié)

    “四零”承諾服務(wù)創(chuàng)建工作總結(jié)

    (二)堅持問題導(dǎo)向,持續(xù)改進(jìn)工作。要繼續(xù)在提高工作效率和服務(wù)質(zhì)量上下功夫,積極學(xué)習(xí)借鑒其他部門及xx關(guān)于“四零”承諾服務(wù)創(chuàng)建工作的先進(jìn)經(jīng)驗,同時主動查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點(diǎn)問題。要進(jìn)一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時限,深化政務(wù)公開,努力為企業(yè)當(dāng)好“保姆”,為群眾提供便利,不斷適應(yīng)新時代人民群眾對政務(wù)服務(wù)的新需求。(三)深化內(nèi)外宣傳,樹立良好形象。要深入挖掘并及時總結(jié)作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作中形成的典型經(jīng)驗做法,進(jìn)一步強(qiáng)化內(nèi)部宣傳與工作交流,推動全市創(chuàng)建工作質(zhì)效整體提升。要面向社會和公眾莊嚴(yán)承諾并積極踐諾,主動接受監(jiān)督,同時要依托電臺、電視臺、報紙及微信、微博等各類媒體大力宣傳xx隊伍作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作成果,不斷擴(kuò)大社會知情面和群眾知曉率。

  • “改作風(fēng)、提效能”專項行動工作總結(jié)

    “改作風(fēng)、提效能”專項行動工作總結(jié)

    (五)服務(wù)群眾提效能方面。一是政府采購服務(wù)提檔升級。建成“全區(qū)一張網(wǎng)”,各類采購主體所有業(yè)務(wù)實現(xiàn)“一網(wǎng)通辦,提升辦事效率;全面實現(xiàn)遠(yuǎn)程開標(biāo)和不見面開標(biāo),降低供應(yīng)商成本;要求400萬元以上工程采購項目預(yù)留采購份額提高至采購比例的40%以上,支持中小企業(yè)發(fā)展。2022年,我區(qū)政府采購榮獲”中國政府采購獎“,并以全國第一的成績獲得數(shù)字政府采購耕耘獎、新聞宣傳獎,以各省中第一的成績獲得年度創(chuàng)新獎。二是財政電子票據(jù)便民利民。全區(qū)財政電子票據(jù)開具量突破1億張,涉及資金810.87億元。特別是在醫(yī)療領(lǐng)域,全區(qū)241家二級以上公立醫(yī)療機(jī)構(gòu)均已全部上線醫(yī)療收費(fèi)電子票據(jù),大大解決了群眾看病排隊等待時間長、繳費(fèi)取票不方便的問題,讓患者”省心、省時、省力“。

  • “大學(xué)習(xí)、大討論、大調(diào)研”活動情況總結(jié)報告

    “大學(xué)習(xí)、大討論、大調(diào)研”活動情況總結(jié)報告

    一、活動開展情況及成效按照省委、市委對“大學(xué)習(xí)、大討論、大調(diào)研”活動的部署要求,縣委立即行動,于8月20日組織召開常委會會議,專題傳達(dá)學(xué)習(xí)省委X在讀書班上的講話精神。5月2日,縣委召開“大學(xué)習(xí)、大討論、大調(diào)研”活動推進(jìn)會,及時對活動開展的相關(guān)要求、任務(wù)進(jìn)行再安排再部署,會后制定并下發(fā)了活動實施方案、重點(diǎn)課題調(diào)研方案、宣傳報道方案等系列文件,有效指導(dǎo)活動開展。5月17日、9月1日,縣委再次召開常委會會議,專題聽取“大學(xué)習(xí)、大討論、大調(diào)研”活動開展情況匯報,研究部署下階段工作。9月13日,召開全縣“大學(xué)習(xí)大討論大調(diào)研”活動工作推進(jìn)座談會,深入貫徹全省、全市“大學(xué)習(xí)大討論大調(diào)研”活動工作推進(jìn)座談會精神,總結(jié)交流活動經(jīng)驗,對下一階段活動開展進(jìn)行安排部署?!按髮W(xué)習(xí)、大討論、大調(diào)研”活動的有序開展,為砥礪前行、底部崛起的X注入了強(qiáng)大的精神動力。

  • 2024年度工作計劃匯編(18篇)

    2024年度工作計劃匯編(18篇)

    1.市政基礎(chǔ)設(shè)施項目5項,總建設(shè)里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進(jìn)場,項目部基本建成,正在辦理臨時用地、用電及用水等相關(guān)工作;中鐵佰和佰樂(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學(xué)院配套道路項目在黃麓鎮(zhèn)完成圍墻建設(shè)后即可進(jìn)場施工。2.公益性建設(shè)項目6項,總建筑面積15.62萬㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀(jì)新都小學(xué)擴(kuò)建工程已完成施工、監(jiān)理招標(biāo)掛網(wǎng),2月上旬完成全部招標(biāo)工作;合肥職業(yè)技術(shù)學(xué)院大維修三期已完成招標(biāo)工作,近期簽訂施工合同后組織進(jìn)場施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標(biāo)工作;半湯療養(yǎng)院智能化工程因投訴暫時中止;巢湖市中醫(yī)院(中西醫(yī)結(jié)合醫(yī)院)新建工程正在按照既定計劃推進(jìn),預(yù)計4月中下旬掛網(wǎng)招標(biāo)。