解:設(shè)另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結(jié):因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設(shè)計1.因式分解的概念把一個多項式轉(zhuǎn)化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學(xué)習(xí),引導(dǎo)學(xué)生探究因式分解和整式乘法的聯(lián)系,通過對比學(xué)習(xí)加深對新知識的理解.教學(xué)時采用新課探究的形式,鼓勵學(xué)生參與到課堂教學(xué)中,以興趣帶動學(xué)習(xí),提高課堂學(xué)習(xí)效率.
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計算發(fā)現(xiàn)規(guī)律進而得出答案.解:(1)因式分解的方法是提公因式法,共應(yīng)用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應(yīng)用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設(shè)計1.提公因式分解因式的一般步驟:(1)觀察;(2)適當(dāng)變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應(yīng)用本課時是在上一課時的基礎(chǔ)上進行的拓展延伸,在教學(xué)時要給學(xué)生足夠主動權(quán)和思考空間,突出學(xué)生在課堂上的主體地位,引導(dǎo)和鼓勵學(xué)生自主探究,在培養(yǎng)學(xué)生創(chuàng)新能力的同時提高學(xué)生的邏輯思維能力.
解析:(1)首先提取公因式13,進而求出即可;(2)首先提取公因式20.15,進而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設(shè)計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.
通常購買同一品種的西瓜時,西瓜的質(zhì)量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結(jié)果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結(jié):本題能夠根據(jù)球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關(guān)鍵.
【類型二】 根據(jù)數(shù)軸求不等式的解關(guān)于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結(jié):本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關(guān)于a的方程是解題關(guān)鍵.三、板書設(shè)計1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學(xué)習(xí)不等式的解和解集,利用數(shù)軸表示不等式的解,讓學(xué)生體會到數(shù)形結(jié)合的思想的應(yīng)用,能夠直觀的理解不等式的解和解集的概念,為接下來的學(xué)習(xí)打下基礎(chǔ).在課堂教學(xué)中,要始終以學(xué)生為主體,以引導(dǎo)的方式鼓勵學(xué)生自己探究未知,提高學(xué)生的自我學(xué)習(xí)能力.
答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應(yīng)找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題.三、板書設(shè)計1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點:能夠運用平方差公式分解因式的多項式必須是二項式,兩項都能寫成平方的形式,且符號相反.運用平方差公式因式分解,首先應(yīng)注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通??紤]應(yīng)用平方差公式;如果多項式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結(jié):本題是線段垂直平分線的性質(zhì)和角平分線的性質(zhì)的綜合,掌握它們的適用條件和表示方法是解題的關(guān)鍵.三、板書設(shè)計1.角平分線的性質(zhì)定理角平分線上的點到這個角的兩邊的距離相等.2.角平分線的判定定理在一個角的內(nèi)部,到角的兩邊距離相等的點在這個角的平分線上.本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,從而有效地增強了學(xué)生對角以及角平分線的性質(zhì)的感性認識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運用上還存在問題,需要在今后的教學(xué)與作業(yè)中進一步的加強鞏固和訓(xùn)練.
探究點三:作中心對稱圖形如圖,網(wǎng)格中有一個四邊形和兩個三角形.(1)請你畫出三個圖形關(guān)于點O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個整體圖形,請寫出這個整體圖形對稱軸的條數(shù);這個整體圖形至少旋轉(zhuǎn)多少度能與自身重合?解:(1)如圖所示;(2)這個整體圖形的對稱軸有4條;此圖形最少旋轉(zhuǎn)90°能與自身重合.三、板書設(shè)計1.中心對稱如果把一個圖形繞著某一點旋轉(zhuǎn)180°,它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱.2.中心對稱圖形把一個圖形繞著某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,結(jié)合圖形,多觀察,多歸納,體會識別中心對稱圖形的方法,理解中心對稱圖形的特征.
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學(xué)生也很容易掌握。但在一些綜合運用的題目中,學(xué)生總會易忘記先觀察是否有公因式,而直接想著運用公式法分解。這樣直接導(dǎo)致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強。其實公式法分解因式。學(xué)生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進行區(qū)分。如果是兩項的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項則優(yōu)先考慮完全平方式進行因式分解。培養(yǎng)學(xué)生的整體觀念,靈活運用公式的能力。注重總結(jié)做題步驟。這章節(jié)知識看起來很簡單,但操作性很強的,相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手,基礎(chǔ)不好的學(xué)生需要手把手的教,因此,應(yīng)該引導(dǎo)學(xué)生總結(jié)多項式因式分解的一般步驟①如果多項式的各項有公因式,那么先提公因式;
方法總結(jié):作平移圖形時,找關(guān)鍵點的對應(yīng)點是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應(yīng)點;②確定圖形中的關(guān)鍵點;③利用第一組對應(yīng)點和平移的性質(zhì)確定圖中所有關(guān)鍵點的對應(yīng)點;④按原圖形順序依次連接對應(yīng)點,所得到的圖形即為平移后的圖形.三、板書設(shè)計1.平移的定義在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移.2.平移的性質(zhì)一個圖形和它經(jīng)過平移所得的圖形中,對應(yīng)點所連的線段平行(或在一條直線上)且相等,對應(yīng)線段平行(或在一條直線上)且相等,對應(yīng)角相等.3.簡單的平移作圖教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實際問題抽象成圖形問題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識靈活運用到生活中.
解1:設(shè)該多邊形邊數(shù)為n,這個外角為x°則 因為n為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因為 ,所以 解2:設(shè)該多邊形邊數(shù)為n,這個外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習(xí),鞏固提高1.七邊形的內(nèi)角和等于______度;一個n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個頂點可以畫7條對角線,則這個n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個多邊形的各個內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設(shè)計一個內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實現(xiàn)。(填“能”與“不能”)6. 如圖4,要測量A、B兩點間距離,在O點打樁,取OA的中點 C,OB的中點D,測得CD=30米,則AB=______米.
教學(xué)效果:部分學(xué)生能舉一反三,較好地掌握分式方程及其應(yīng)用題的有關(guān)知識與解決生活中的實際問題等基本技能.第六環(huán)節(jié) 課后練習(xí)四、教學(xué)反思數(shù)學(xué)來源于生活,并應(yīng)用于生活,讓學(xué)生用數(shù)學(xué)的眼光觀察生活,除了用所學(xué)的數(shù)學(xué)知識解決一些生活問題外,還可以從數(shù)學(xué)的角度來解釋生活中的一些現(xiàn)象,面向生活是學(xué)生發(fā)展的“源頭活水”.在解決實際生活問題的實例選擇上,我們盡量選擇學(xué)生熟悉的實例,如:學(xué)生身邊的事,購物,農(nóng)業(yè),工業(yè)等方面,讓學(xué)生真切地理解數(shù)學(xué)來源于生活這一事實。有些學(xué)生對應(yīng)用題有一種心有余悸的感覺,其關(guān)鍵是面對應(yīng)用題不知怎樣分析、怎樣找到等量關(guān)系。在教學(xué)中,如果采用列表的方法可幫助學(xué)生審題、找到等量關(guān)系,從而學(xué)會分析問題??赡軐W(xué)生最初并不適應(yīng)這種做法,可采用分步走的方法,首先,讓學(xué)生從一些簡單、類似的問題中模仿老師的分析方法,然后在練習(xí)中讓學(xué)生悟出解決問題的竅門,學(xué)會舉一反三,最后達到能獨立解決問題的目的。
例1 解不等式x> x-2,并將其解集表示在數(shù)軸上.例2 解不等式組 .例3 小明放學(xué)回家后,問爸爸媽媽小牛隊與太陽隊籃球比賽的結(jié)果.爸爸說:“本場比賽太陽隊的納什比小牛隊的特里多得了12分.”媽媽說:“特里得分的兩倍與納什得分的差大于10;納什得分的兩倍比特里得分的三倍還多.”爸爸又說:“如果特里得分超過20分,則小牛隊贏;否則太陽隊贏.”請你幫小明分析一下.究竟是哪個隊贏了,本場比賽特里、納什各得了多少分?例4 暑假期間,兩名家長計劃帶領(lǐng)若干名學(xué)生去旅游,他們聯(lián)系了報價均為每人500元的兩家旅行社,經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩名家長全額收費,學(xué)生都按七折收費;乙旅行社的優(yōu)惠條件是家長、學(xué)生都按八折收費.假設(shè)這兩位家長帶領(lǐng)x名學(xué)生去旅游,他們應(yīng)該選擇哪家旅行社?
解析:整個陰影部分比較復(fù)雜和分散,像此類問題通常使用割補法來計算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉(zhuǎn)90°至陰影部分②處,使整個陰影部分割補成半個正方形.解:如圖②,把陰影部分(Ⅰ)繞點O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補法補全為一個面積可以計算的規(guī)則圖形.三、板書設(shè)計1.簡單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應(yīng)用教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、歸納和動手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.
1.知識目標(biāo):在回顧與思考中建立本章的知識框架圖,復(fù)習(xí)有關(guān)定理的探索與證明,證明的思路和方法,尺規(guī)作圖等.2.能力目標(biāo):進一步體會證明的必要性,發(fā)展學(xué)生的初步的演繹推理能力;進一步掌握綜合法的證明方法,結(jié)合實例體會反證法的含義;提高學(xué)生用規(guī)范的數(shù)學(xué)語言表達論證過程的能力.3.情感價值觀要求通過積極參與數(shù)學(xué)學(xué)習(xí)活動,對數(shù)學(xué)的證明產(chǎn)生好奇心和求知欲,培養(yǎng)學(xué)生合作交流的能力,以及獨立思考的良好學(xué)習(xí)習(xí)慣.重點:通過例題的講解和課堂練習(xí)對所學(xué)知識進行復(fù)習(xí)鞏固難點:本章知識的綜合性應(yīng)用。【歸納總結(jié)】(1) 定義: 三條邊都相等 的三角形是等邊三角形。(2)性質(zhì):①三個內(nèi)角都等于60度,三條邊都相等②具有等腰三角形的一切性質(zhì)。
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此題中的不等關(guān)系:現(xiàn)在已存有55元,計劃從現(xiàn)在起以后每個月節(jié)省20元.若此學(xué)生平板電腦至少需要350元.列出不等式20x+55≥350.故選B.方法總結(jié):用不等式表示數(shù)量關(guān)系時,要找準(zhǔn)題中表示不等關(guān)系的兩個量,并用代數(shù)式表示;正確理解題中的關(guān)鍵詞,如負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過、至少、至多等的含義.三、板書設(shè)計1.不等式的概念2.列不等式(1)找準(zhǔn)題目中不等關(guān)系的兩個量,并且用代數(shù)式表示;(2)正確理解題目中的關(guān)鍵詞語的確切含義;(3)用與題意符合的不等號將表示不等關(guān)系的兩個量的代數(shù)式連接起來;(4)要正確理解常見不等式基本語言的含義.本節(jié)課通過實際問題引入不等式,并用不等式表示數(shù)量關(guān)系.要注意常用的關(guān)鍵詞的含義:負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過,這些關(guān)鍵詞中如果含有“不”“非”等文字,一般應(yīng)包括“=”,這也是學(xué)生容易出錯的地方.
【類型三】 分式方程無解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當(dāng)m-1=0時,此方程無解,此時m=1;②方程有增根,則x=2或x=-2,當(dāng)x=2時,代入(m-1)x=-10得(m-1)×2=-10,m=-4;當(dāng)x=-2時,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無解與分式方程有增根所表達的意義是不一樣的.分式方程有增根僅僅針對使最簡公分母為0的數(shù),分式方程無解不但包括使最簡公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設(shè)計1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗.2.分式方程的增根(1)解分式方程為什么會產(chǎn)生增根;(2)分式方程檢驗的方法.
【類型一】 逆用積的乘方進行簡便運算計算:(23)2014×(32)2015.解析:將(32)2015轉(zhuǎn)化為(32)2014×32,再逆用積的乘方公式進行計算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法總結(jié):對公式an·bn=(ab)n要靈活運用,對于不符合公式的形式,要通過恒等變形轉(zhuǎn)化為公式的形式,運用此公式可進行簡便運算.【類型二】 逆用積的乘方比較數(shù)的大小試比較大?。?13×310與210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法總結(jié):利用積的乘方,轉(zhuǎn)化成同底數(shù)的同指數(shù)冪是解答此類問題的關(guān)鍵.三、板書設(shè)計1.積的乘方法則:積的乘方等于各因式乘方的積.即(ab)n=anbn(n是正整數(shù)).2.積的乘方的運用在本節(jié)的教學(xué)過程中教師可以采用與前面相同的方式展開教學(xué).教師在講解積的乘方公式的應(yīng)用時,再補充講解積的乘方公式的逆運算:an·bn=(ab)n,同時教師為了提高學(xué)生的運算速度和應(yīng)用能力,也可以補充講解:當(dāng)n為奇數(shù)時,(-a)n=-an(n為正整數(shù));當(dāng)n為偶數(shù)時,(-a)n=an(n為正整數(shù))
解析:平行線中的拐點問題,通常需過拐點作平行線.解:(1)∠AED=∠BAE+∠CDE.理由如下:過點E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結(jié):無論平行線中的何種問題,都可轉(zhuǎn)化到基本模型中去解決,把復(fù)雜的問題分解到簡單模型中,問題便迎刃而解.三、板書設(shè)計平行線的性質(zhì):性質(zhì)1:兩條平行線被第三條直線所截,同位角相等;性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等;性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補.平行線的性質(zhì)是幾何證明的基礎(chǔ),教學(xué)中注意基本的推理格式的書寫,培養(yǎng)學(xué)生的邏輯思維能力,鼓勵學(xué)生勇于嘗試.在課堂上,力求體現(xiàn)學(xué)生的主體地位,把課堂交給學(xué)生,讓學(xué)生在動口、動手、動腦中學(xué)數(shù)學(xué)
解析:橫軸表示時間,縱軸表示溫度.溫度最高應(yīng)找到圖象的最高點所對應(yīng)的x值,即15時,A對;溫度最低應(yīng)找到圖象的最低點所對應(yīng)的x值,即3時,B對;這天最高溫度與最低溫度的差應(yīng)讓前面的兩個y值相減,即38-22=16(℃),C錯;從圖象看出,這天0~3時,15~24時溫度在下降,D對.故選C.方法總結(jié):認真觀察圖象,弄清楚時間是自變量,溫度是因變量,然后由圖象上的點確定自變量及因變量的對應(yīng)值.三、板書設(shè)計1.用曲線型圖象表示變量間關(guān)系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢,可通過圖象來研究變量的某些性質(zhì),這也是數(shù)形結(jié)合的優(yōu)點,但是它也存在感性觀察不夠準(zhǔn)確,畫面局限性大的缺點.教學(xué)中讓學(xué)生自己歸納總結(jié),回顧反思,將知識點串連起來,完成對該部分內(nèi)容的完整認識和意義建構(gòu).這對學(xué)生在實際情境中根據(jù)不同需要選擇恰當(dāng)?shù)姆椒ū硎咀兞块g的關(guān)系,發(fā)展與深化思維能力是大有裨益的